

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Thomas Prokscha, Laboratory for Muon Spin Spectroscopy

LEM sample environment/spectrometers at PSI KEK-TRIUMF workshop on Ultra Slow Muons, March 8/9 2012

LE- μ^+ beam and LE- μ SR spectrometer

Cryostats (⁴He) (2.3 – 320 K):

4 Konti He-flow cryostats, 4 – 320 K (Cryovac, Germany; sample setup PSI)

Konti-1: development, special experiments (current injection (1 nA – 1 mA), illumination, in-situ resistance measurements) Konti-3: development, special experiments (flight-path tests, applying electric fields) Konti-2/4: for normal user operation; 2 cryostats for faster sample change

LowTemp cryostat, 2.7 – 300 K (normal setup), 2.3 – 300 K (sample on sapphire) (inhouse development together with Univ. Birmingham)

Furnace (RT – 150 °C):

under development; +-10 kV at sample possible at 150 °C (higher T without HV)

Magnets/Spectrometer (0 – 0.32 T):

WEW: B perpendicular to sample surface/parallel to beam: 0 - 0.32 T (0 - 550 A)B-parallel: B parallel to sample surface/perpendicular to beam: 0 - 0.03 T (0 - 9 A)

LEM spin-rotator (+- 90 degree spin rotation):

For LF- μ SR, separation of protons/ions from muons; commissioning started in 02/12

Position sensitive MCP detector

Measure beam spot at sample position; time-of-flight between start detector ["Trigger Detector (TD)"] and sample to determine energy loss in TD and t_{n}

MCP detector (40 mm active area) with delay-line anode readout for x-y position information (RoentDek, Germany); position resolution < 0.1 mm.

Sample setup on Konti and LowTemp cryostats

Ag- or Ni-coated high purity Al sample plate, 7 cm diameter 6-mm-thick sapphire disk

Ag-coated high purity Al base plate with T-diodes

Sample plate can be biased up to +-12.5 kV to adjust the muon implantation energy

UHV Konti and LowTemp cryostats

Furnace setup (currently dismantled)

No active cooling/temperature regulation

High voltage lead

RT – 150 °C with +-10 kV at sample T > 150 °C without high voltage

WEW magnet with APD positron spectrometer

Spin-off of APD/scintillator developments for the 5 T ALC and the new 9.5 T high-field μ SR spectrometers

APD: green sensitive SSPM_0810G1MM by Photonique Sensor area: 1.1 mm² Operating voltage: 30 – 36 V Gain: $0.5 \cdot 10^6$ Single photon detection efficiency: 35/41 % (at λ = 520/630 nm) Temperature coefficient: ~1% per °C Scintillators: BC-400 Wavelength shifting fibres: BCF-92

B-parallel magnet with PM positron spectrometer

PAUL SCHERRER INSTITUT

Floating Ohm Meter (FOM), Univ. Fribourg/PSI

 $\pm 12kV$

1nA

± 50V

± 1.0mA

Setup for applying electric fields

floating pin contact holder (up to +-12 kV, or current injection without biasing):

Setup for illumination

How many charge carriers can be generated?

Estimate of charge carrier density n_{eh} in Si at 30 mA LED current, 33 LEDs. Measured intensity I = 10 mW/cm²: n_{f} =2.6 10¹⁶ γ /cm²s

PAUL SCHERRER INSTITUT

 $n_{eh} \sim$ (1-R) α $n_{\nu} \tau$ = 0.65 10⁴/cm 2.6 10¹⁶ γ/cm²s 2μs \approx 3.5 10¹⁴/cm³

R: reflectivity of Si at 525 nm (2.36 eV, green LED) α : absorption coefficient of Si at 2.36 eV τ : charge carrier lifetime in Si including surface recombination [D. Klein et al., physica status solidi (b) 245 (2008) 1865.]

With I = 10 mW/cm², green LEDs, steady state n_{eb} tunable in Si up to $\approx 10^{15}$ /cm3

In Ge, α is ~50 times larger: n_{eb} is of order 10¹⁶/cm³

New LED setup for illumination

Intensities at ~85% of max. LED power 80 mW/cm² at 405 nm = 1.6 10^{17} γ /cm²s

LED Head 400 nm

Peak wavelength	400 nm +/- 10 nm
Spectral width (FWHM)	approx. 9 nm
Focus distance	approx. 6 mm

Spectral distribution 400 nm

Persistent photo-induced inversion of Ge

LEM spin-rotator for LF-µSR

PAUL SCHERRER INSTITUT

LEM spin-rotator installation

Looking through electrostatic mirror on spin-rotator and trigger detector

LEM spin-rotator (SR): first tests with protons

H⁺ Beamspot at sample position

PAUL SCHERRER INSTITUT

Data acquisition electronics

VME TDC, scaler, splitter, CFD modules - μ SR and time-of-flight data; all logic in software

NIM modules for

- analog mixing of WEW scintillator segments
- coincidence rates of positron detectors

Software tools, based on ROOT, Geant4

MusrROOT file format; inspection with ROOT browser

TOF spectrum of protons

Muon stopping profiles: perl-Qt GUI to run TrimSP (W. Eckstein, Munich)

ayers Additional Parame	ters Scans (Disbaled)	
Layers		Projectile parameters
Number of Layers 2	Density [a/cm³] Thickness [Å]	Projectile
Clayer 1	Density (g/enr.)	Number of projectiles 10000
SrTiO3	5.12 200	Starting depth [Å] 0.0
_Laver 2		Depth increment [Å] 10.0
Ag	10.49 2000	Energy [eV] 2000
		Energy sigma [eV] 450
Clayer 3		Angle [deg] 0
		Angle sigma [deg] 15
Clayer 4		Random seed 78741
Layer 5		File Names
		File names prefix
claver 6		SrTiO3
		Save in subdirectory
[./ Brows
Layer /		
Muon profile	es in Cu ₂ ZnSnSe ₄ , ρ=6.437 g/cm³	
0.05	Cu2ZnSnSe4_E2500, 2.5	(keV)
	Cu2ZnSnSe4_E5000, 5.0	(keV)
0.04	Cu2ZnSnSe4_E7500, 7.5	(keV)).0 (keV)
	—⊖— Cu2ZnSnSe4_E15000, 15	5.0 (keV)
0.03	Cu2ZnSnSe4_E20000, 20	0.0 (keV)
° E/ 🗗 🖌 🚺	Cuzziisiise4_ezsooo, za	5.0 (KeV)
20.02		
) H / K IV 🔺 \		ROOT macr
5		nlot stonning
0.01		plot stoppint
0.01		profiles