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» Methods of production
» in-flight charge exchange
» thermal from hot metal foils
» thermal from oxide nanostructures
» Production of e from powders and aerogels
» muonium production in various oxides
» yield into vacuum using uSR
» yield from layer of oxide material via decay position

» Recent TRIUMF experiments — S1249

» material tests

» decay positron and remnant electron imaging

» diffusion model and preliminary comparisons to data

» outlook for vacuum ionization of muonium for ultraslow p+ beams
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Methods of ;e production in vacuum

» Formation via muons in flight 0005 0.010 0.015 [-V/¢

100
» energy determined by charge exchange cross sections
» P.R. Bolton et al., Phys. Rev. Lett. 47, 1441 (1981).

» Applied to ute  (Mu) Lamb shift 80
» C.J. Oram et al., Phys. Rev. Lett. 52, 910 (1984)
» A. Badertscher et al., Phys. Rev. Lett. 52, 914 (1984).
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FIG. 2. A schematic of the apparatus, showing a good
event in which a Lyman « photon is detected in micro-
channel plate (MCP1) from deexcitation of u* e~ (25) in
the quench region.
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Methods of ;e production in vacuum
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» Emission from hot metal foll 016 232 Mevse
» emission of u* from surface as Mu

0.14f
» analogy to proton diffusion in metal s
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» Early development by University of Arizona group 012
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» for ute — p et search B
» first application of “Arizona” or surface muons (T. FIG. 3. Temperature dependence of the delayed events in
Bowen) Fig. 2(a) summed over the time interval from 2 to 6 usec.
The fitting curve represents an Arrhenius-type activation
» K.R. Kendall, PhD, University of Arizona (1 972) with a correction due to u* trapping at thermal vacancies at

high temperature.

» Demonstration by AT&T/UT-MSL/Tsukuba at KEK

» for experiment on Mu in vacuum and slow pt+ beam;
W target, yield and temperature dependence

» A.P.Mills et al., Phys. Rev. Lett. 56, 1463 (1986)
» Laser ionization by UT-MSL/RIKEN group at KEK
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» to produce slow muon beams g o fm%%ﬂ e
» K. Nagamine et al., Phys. Rev. Lett. 74, 4811 (1995) S 5§w J Lﬁ T Counts
o puble il gl M Aot by plple dd 92
» Thermal emission from Pt group metals omfr L ]
» Pt Ir, W comparison; diffusion analysis g o1z .- ;,'~'&,."__.-;_:; R ]
» A. Matsushita and K. Nagamine, Phys. Lett. A 244, R Fg :
174 (1998) L S ]
S
TOF [ps)

FIG. 2. Evidence for the ultraslow u* production seen in the mass-TOF two-dimensional histogram and a resonance curve for the
laser ionization of thermal Mu obtained by changing the VUV frequency. The inset shows resonance curves for the laser ionization
of thermal Mu with reference to those of thermal H from residual H, gas, thermal D from introduced D, gas, and from thermal T
of reaction products.
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Methods of ;e production in vacuum

0.30

» Emission from oxide nanostructures ] ool
» diffusion of muonium at room temperature M sooo] 18 Target
» analogy to positronium emission ' 1
> Early development by TRIUMF/UBC : i +009 o
» for uyte- — pet search 1oa
> uSR shows depolarization of Mu by O, in silica __ ] A
powder, fast release from 7 nm particles i ] e 1 @60, @, e .
> G.M. Marshall etal., Phys. Lett. 65A, 351 (1978) | """ | fiiidedalin
» silica shows more Mu formation (60%) and less B Fe e B
depolarization (0.2/us) than Al,O5;, MgO, CaO
» R.F. Kiefl et al., Hyperfine Interactions 6, 185 (1979) £
» Observation of emission by TRIUMF/UVic/Arizona/ ™| S
Wyoming o o
» more Mu in vacuum than predicted B
» D=80 cm?/s, not 8 cm?/s
» G.A. Beeretal., Phys. Rev. Lett. 57, 671 (1986) .
» Confirmation and polarization demonstration by - {
Heidelberg/Yale wl I of—talit 0.l
» even more Mu in vacuum, D=1000 cm?/s 2 N 16, Maon dess e e e st
> KA Woodle tal, 2. Phys. D 9,59 (1988) i
» Different materials ¥ , faton with diffusion constant of 80 em’/s

» aerogel: W. Schwarz et al., J. Non-Crystalline Solids
145, 244 (1992).

» mesoporous thin films: A. Antognini et al., arXiv:
1112.4887
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Decay Time (us)

Fig, 4. Obscrved number of positrons as a function of time with
an applied magnetic ficld of 1.4 G. The upper histogram corresponds
to decays from Region I of Fig. 2 and the Jower histogram to

decays from Regions Il and IV
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Summary of muonium in oxide powders

TABLE 1
Sample u+Asyt_nme1'ry u+Relaxaﬁon Mu Asy. at Mu Relax. Polarized u+ Polarized Missing o~-Ps Quench o-Ps Inter-
(powder at time=0 Rate tTime=0 Rate Fraction Mu Fraction Fraction Rate granular
description) Fraction
ut pt My
Ao AR A *R Fut Fu Yo-Ps Fo-ps
-1 - -
usec psec”! g 4 g usec ! b4
R.F. Kiefl et al., Hyperfine
Al .342+.006 .031+.009 :
: Interactions 6, 185 (1979).
FeZOS(coarSe) .070£.006 .009%.009
Si02(35A) A7 2,02 .03 £.02 .083x.004 3545 416 .16+.08 26.422.6
Cal(coarse)  .185x.010 .07 +,02 .047+.005 2.5%.6 4313 354 2245
MgO{fine) .262+.016 .05 .04 .020+,004 1.9£.5 7116 152 14x7 .37+.09 14.3+1.4
AI203(I5G:"\) +267+.013 .08 %.02 047,018 11.3%4.4 72+4 3514 =7+15 F.33:.14 24.6x2.4
GeOz(coarse) .18 £.03 .044%.016 no signal 40+7 607
Snoz(coarse) .336£.019 .056%.025 no signal 9815 2%5
SiO{coarse) .24 +.01  .049:%.009 no signal 63.5¢1 3641
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Muonium emission from fine silica

» What happens to the uSR signal when O, is added?
» in an argon moderator, Mu polarization is destroyed by O, from spin exchange reaction.
» Disappearance of Mu polarization interpreted as evidence of u*te™ emission from powder
particles into vacuum between particles.
» particle sizes of 3.5 nm and 7.0 nm radius were measured
» BET surface adsorption: 400 m?/g, p = 2.2 g/cm?, spherical geometry — r = 3.5 nm
» diffusion constant Dg=(2.24+0.4)x 10" cm?/s, emission probability before decay ~97%
> but note that muonium is still among the powder particles — surface interactions
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Muonium emission from a layer

Above: density plot of
e* tracks extrapolated
to beam axis.

: Right: time distributions
— for et tracks for target

Az~10 mm and three vacuum regions.
At~2 us
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ute” from SiO, powder layers: applications

» An incomplete bibliography
» Muonium conversion experiments:

» G.M. Marshall et al., Phys. Rev. D25 (1982) 1174
» updated following G.A. Beer et al., Phys. Rev. Lett. 57 (1986) 671

» T.M. Huber et al., Phys.Rev. D41 (1990) 2709

» B.E. Matthias et al., Phys. Rev. Lett. 66 (1991) 2716 (erratum PRL 67
(1991) 932)

» R. Abela et al., Phys. Rev. Lett. 77 (1996) 200

» L. Willmann et al., Phys. Rev. Lett. 82 (1999) 49
» Muonium 1S-2S experiments:

» Steven Chu et al., Phys. Rev. Lett. 60 (1988) 101

» V. Meyer et al., Phys. Rev. Lett. 84 (2000) 1136
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Recent results — S$S1249 at TRIUMF

» Motivated by J-PARC muon g2
proposal

» laser ionization of room-
temperature Mu in vacuum

» re-acceleration maintaining low
transverse velocities

» see following presentation of T.
Mibe
» Is there a better Mu production
and emission material?
» powder is not easy to use
» silica aerogels
» new fabrication methods
» newer mesoporous materials
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S1249 - initial material selection

» A suitable target must have: 02
» high probability of u*+e~ formation. °*
> insulating oxides F
» small muonium depolarization. o_
> pure, with only weak depolarization mechanisms os—
» significant emission of u*e- from material into vacuum.
» high specific surface area or small dimension unit oasE
structure F
» self-supporting structure, if possible. :
> powders difficult to evacuate o
» Use TF-uSR to identify possibilities: —
» initial asymmetry of muonium precession — formation @
probability. o1
» time dependence — depolarization. °E
» fast depolarization with addition of O, — emission into e m P
voids. 2 502 mTorr O, > T
» Promising materials with O, depolarization (F,,,): E =
» Aerogel* (0.60), nanogel® granules (0.70), and Cab-O- R 260 0 &bo sbo ST

Sil® powder (0.65). Asymmetries vs time (ns) for 0.1 g/cm?3 aerogel

> Aerogel is self-supporting! Analysis and graphs by S. Hirota.
» Others rejected Results of data taken in June 2010.
» mesoporous silica — lower F,,, (0.2), no relaxation from o .
0,, sensitive to preparation details *Hydrophobic silica aerogel production reference:
» alumina — weak F,,, (0.02), faster vacuum relaxation M. Tabata et al,, Nuclear Instruments
My A=LEE5 and Methods A 668, 64 (2012)
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S1249 - emission experiments
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S1249 - detect decay e and atomic e
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to decay region

e in MCP
O\ keV energy

» Identify and characterize

pte decay position by:
» time and position(y,z) correlations

of muon decays from e* tracking
(drift chambers).

— “coincidence experiment”

» further correlation with time and
position(x,z) of atomic e~ after u*
decay (position-sensitive MCP),
guided by parallel £ and B fields.

» Muons decay in:

» the target, as pte and ut.
» vacuum, in flight, as pte.
» surrounding materials.

*nanostructure: high specific surface
area A/m.

For a sphere, A/m = 3/(rp).

A/m= 400 m2/g = r=3.4 nm for silica.
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S1249 - simulation of diffusion

» How does the simulation work? z=0
» Geometry assumes material occupies region of z <z<O0: <

> diffusing particle exits material upon reaching z = 0 (or is trapped at
opposite surface at z = z,).

» Three-dimensional random walk starts in a region z ;, < 2 < 0, with a
distribution of initial z coded on an event-by-event basis.

>» e.g., from G4 simulations verified by momentum scans of target stops
» Particles make random walk within the material in three dimensions in layer r\/\‘
infinite in z,y.
> Event decay time selected from an exponential distribution of mean 7,.

> Step size of walk is a time ¢, determined by two parameters:

> input temperature (e.g., 293 K) that determines a thermal speed N
distribution (vy,)
» input diffusion constant D in cm?/s and the derived path length of the
step .
> Step length [ from exponential distribution of mean [, =a(D/<|vy,|>).

» coefficient « is adjusted to 3.82 from theoretical value of 3.0 that
is valid for Gaussian distributions of time intervals and jump
lengths. \

2= 2,in<0
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S1249 - simulation of diffusion

» How does the simulation work (continued)? =0
» Step speed v from a Maxwellian distribution of mean <|v |>. <
» Step time is I/v: distribution is convolution of distance and speed.
» Step direction ¢ uniform in [0,27) and cos@ uniform in [-1.,+1.].
» Time after each step is compared to event decay time:
» if not decayed, location after each step is determined by path length |

and randomized direction.
> if decayed, path length assumed for the final step is reduced

proportionally to time left to decay prior to step, divided by assume
step time.

» Position in z is checked at each step; if z > 0, then:

>» emission flag is set. N

> final step time and position are corrected to the surface crossing point,
time remaining is set to time left before decay to simulate free
propagation in vacuum, with direction as determined from final step.
» gives approximate cos@ emission angle distribution naturally.

» similar check and behavior for z < z,;,, except no further motion.

AN

2= 2,in<0
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S$1249 - distributions from simulation
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S1249 - decay time distributions

» Data from November 2010

aerogel target.

» Data includes background,
presumably with muon decay

lifetime, that must be subtracted.
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S1249 - ¢ time-position correlation

Fit to single scale factor of simulation of 108 diffusing Mu at T=293K, plus independent

exponential backgrounds

Scale factor gives D=9.2+0.2 cm?/s (preliminary, stat. only) for 0.027 g/cm3 aerogel
Residuals show evidence of higher speeds; x2/dof=190/26

Aerogel, 27 mg/cm? V1
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2011 data, preliminary only!

Aerogel, 27 mg/cm? V2 Aerogel, 27 mg/cm? V3
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S1249 - ¢ time-position correlation

Fit to single scale factor of simulation at T=440K (+50%), plus independent exponential

backgrounds

Diffusion constant not significantly changed

2011 data, preliminary only!

Residuals show evidence of higher speeds; somewhat better x?/dof=51/26

Aerogel, 27 mg/cm? V1
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Events

Asymmetry

S1249 - Mu signal in aerogel

2011 data, preliminary only!
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» Precession in MCP atomic e~ guide field, 88 G (not very uniform)
» A +=0.148+0.002, Ay, = 0.131+0.007 — Fy,, = 0.64, assuming all

polarization is observed

» 4 densities of silica aerogel used in 2011; 27, 49, 99, and 180 mg/cm?3
» No significant density dependence observed for emission probability
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» Use diffusion simulation to predict
muonium emission into laser
lonization region.

» For a narrow pulsed beam with
TRIUMF beam properties

(22 MeV/c, Ap/p~6% FWHM):

» For region from 0.1 to 0.5 cm from
emitting surface, yield of S1249 target
is shown per 108 initial muonium
atoms formed in the silica.

» Correct for 60% muonium formation
probability in aerogel; also only half of
the incident muons stop in the layer =
0.15% of incident muon beam is
muonium in ionization region.

t (us)

e’ 1to 5 mm, per 10%in target
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Prediction for muonium ionization
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Problems

» Muon polarization in Mu is only 50%.
» in longitudinal field, this increases to ~90% at 0.3 T

» Diffusion distance (Dv-#)”2 is much smaller than muon
range spread for conventional surface beams.
» the number of passages through a layer could be increased by
the “anticyclotron” method
» Is there a common solution?
» transversely-polarized u* is degraded, then passes multiple
times through a layer
» ionization in B field, extraction of ut by E field parallel to B
axis
» G4 simulations by D. Contreras (TRIUMF co-op student)

» total yield into vacuum can be increased substantially using 1.2
T

» beam spreads due to multiple scattering in direction parallel to
B field (out of page)
» only 50% increase in yield in 1 cm? area of layer surface 'u+

» real field shapes? getting 4 MeV ut into field? getting keV u*
out of field?

» More effort needed to make more realistic simulation.
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» Silica powder has so far been the main material for production of
muonium in vacuum for research applications.

» Aerogel is a potential alternative to silica powder for muonium
production in vacuum.

» more convenient, more vacuum-friendly, self-supporting
» yields are no better than 50% of powder yields
» note wide discrepancies in powder yield
» Diffusion model reproduces the main features.
» is the inconsistency with room-temperature thermal emission real?
» if so, what modifications are necessary?
» Problems to be solved:

» diffusion distance is much smaller than surface muon beam spreads
» polarization loss in muonium formation
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The S1249 group, 2011

» G. Beer, D. Contreras, Y. Fujiwara, Y. Fukao, S. Hirota, H. linuma, K. Ishida, M.
Iwasaki, T. Kakurai, S. Kanda, G. Marshall, T. Mibe, H. Onishi, A. Olin, N. Saito,
D. Tomono, K. Ueno.
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