

Although most μSR is μ^+SR , it is often desirable to use negative muons in the same way, albeit with more difficulty.

DRAWBACKS of **µ**⁻SR

L·S Depolarization in the atomic cascade

Solution Nuclear Muon Capture: short lifetimes, few decay e-

Although most μSR is μ^+SR , it is often desirable to use

negative muons in the same way, albeit with more difficulty.

DRAWBACKS of **µ**⁻SR

L·S Depolarization in the atomic cascade

Solution Nuclear Muon Capture: short lifetimes, few decay e-

Atomic Capture & $L \cdot S$ Depolarization of μ^-

Large impact parameters are more probable \Rightarrow initial orbits tend to be circular.

View along µ⁻ momentum

n

Primitive Atomic Physics:

 $r_n = \frac{a_\circ}{Z} \left(\frac{m_e}{m}\right) n^2$

$$E_n = -\frac{13.6 \text{ eV}}{n^2} Z^2 \left(\frac{m}{m_e}\right)$$

L·S couplings depolarize μ^- spin unless fast Auger!

Although <u>most</u> μSR is μ^+SR , it is often desirable to use negative muons in the same way, albeit with more difficulty.

DRAWBACKS of **µ**⁻SR

L·S Depolarization in the atomic cascade

Solution Nuclear Muon Capture: short lifetimes, few decay e-

Although <u>most</u> μSR is μ^+SR , it is often desirable to use negative muons in the same way, albeit with more difficulty.

DRAWBACKS of **µ**⁻SR

L·S Depolarization in the atomic cascade

Solution Nuclear Muon Capture: short lifetimes, few decay e-

BONUS: μ -Nb at 2.4 T

