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Abstract

The local electronic structure of the positive muon has been investigated in semimetallic

graphite using muon spin rotation/relaxation. Both the muon Knight shift and the spin

relaxation rate in highly oriented pyrolytic graphite are anomalously large compared to

those in simple metals and both have an unusual temperature dependence. These results

indicate that a local moment forms around the muon due to the low carrier density. In

contrast, measurements on metallic LiC6 reveal a smaller muon Knight shift which is

opposite in sign (negative) and almost temperature independent. We suggest this is due

to core polarization of a Mu−Li+ complex.

The local magnetic susceptibility around a muon in the quasi one dimensional spin

1/2 antiferromagnetic chain compound CPC has been investigated using muon spin rota-

tion/relaxation. A recent theory by Eggert and Affleck predicts that the local magnetic

susceptibility near an impurity in a spin 1/2 chain is dramatically altered compared to

the bulk magnetic response. This novel behavior can be attributed to a gapless spectrum

of magnetic excitations which characterizes spin 1/2 chain compounds and may be con-

sidered the magnetic equivalent of the Kondo effect in metals. In this thesis we compare

the local spin susceptibility as measured by the muon spin precession frequency with the

bulk magnetic susceptibility measured in a SQUID magnetometer. There is a dramatic

difference between the local and bulk magnetic response. In CPC, the perturbation due

to the muon is in accordance with theory.
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Chapter 1

Introduction

This thesis presents µSR measurements of the local electronic and magnetic properties

of the positive muon in semimetallic highly oriented pyrolytic graphite (HOPG), metallic

first-stage lithium intercalated graphite (LiC6) and in the insulating dichlorobis (pyri-

dine) copper(II) salt (CPC). Although these materials have very different electrical and

magnetic properties, there is at least one common feature – they each have a gapless

excitation spectrum. This happens to be a key factor in the theory for how a system

responds to an impurity. The main purpose of this thesis is to show how this feature

affects local properties of a simple impurity such as a positive muon and to compare this

behaviour with current theories.

Consider a point-like positively charged impurity in an otherwise perfect lattice. This

problem has been the focus of a large number of theoretical and experimental investiga-

tions since the original work by Debye and Hückel published almost 70 years ago [1]. The

practical interest is of course that even small amounts of impurities can dramatically alter

bulk properties. The theoretical interest in the problem is driven by the fascinating co-

operative many-body phenomena involved in the screening of such an impurity. Despite

the remarkable success achieved in theory, the experimental investigation of this prob-

lem by using conventional magnetic resonance techniques is virtually impossible. Here

the major difficulty is to find an appropriate technique that has the required sensitivity

without requiring a large number of impurities to be present in the sample. Muon spin

1
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rotation/relaxation is an ideal technique to investigate this problem since it has the re-

quired sensitivity – typically only one muon is in the sample at a time. Also the positive

muon represents a simple point charge disturbance to the system.

Chapter 1 introduces the necessary theoretical background related to the mechanism

of screening and local moment formation in metallic media and in addition discusses

recent theory for impurities in 1D S=1/2 insulating antiferromagnets. In Chapter 2 the

reader is provided with a review of µSR techniques and the muon relaxation mecha-

nisms that have been used to analyze the experimental data. Chapter 3 includes the

detailed description of a novel Knight shift apparatus and the electronics associated with

it. Chapters 4 and 5 present the experimental results of the µSR frequency shift mea-

surements in graphite and CPC. Chapter 6 provides the reader with a summary of the

presented measurements.

1.1 Theoretical Background

1.1.1 General Consideration

The electronic and magnetic properties of an isolated positively charged impurity in a

degenerate electron gas have been the subject of numerous theoretical studies because of

their fundamental importance. Several independent techniques, including cluster calcula-

tions [2],[3], local-density calculations based on the Kohn-Sham formalism [4],[5],[6] and

jellium model calculations [7],[8] have revealed the existence of a doubly-occupied bound

state for a wide range of metallic densities starting with rs > 1.9 a.u., where rs = [ 3
4πnc

]1/3

is the single electron radius and nc is the density of carriers. The theoretically predicted

bound state is very shallow, being deepest for rs ≈ 4 a.u. In principle one could test such

theories experimentally by carrying out nuclear magnetic resonance (NMR) on isolated

atomic hydrogen in conductors with different carrier concentrations. However, it is not



Chapter 1. Introduction 3

always possible to dissolve hydrogen in a given conductor. Furthermore, the concen-

tration of hydrogen needed for NMR (∼1019 cm−3) is in general too high to guarantee

isolation from other hydrogen atoms and/or residual impurities.

Alternatively, one can deduce information on isolated atomic hydrogen using the

technique of muon spin rotation (µSR), in which a positive muon is implanted into the

material of interest. The muon (µ+), is a lepton, an elementary particle which is closely

related to the positron from a particle physics point of view since, like the positron, it

has no discernible structure. However, the electronic structure around the positive muon

in a solid is virtually identical to that of hydrogen because the muon mass, although

only 1/9th that of a proton, is still much heavier than that of the electron. For example,

the reduced mass for a muonium atom (µ+e−) in vacuum is almost identical to that of a

hydrogen atom. Muons typically occupy interstitial lattice sites and are normally studied

in the infinitely dilute limit – one muon in the sample at a time. Also, because of the

short muon lifetime 2.197 µs, they typically remain isolated from residual impurities in

the sample. For these reasons, muon implantation is an excellent way to simulate the

behaviour of an isolated hydrogenic impurity.

These aspects of the muon have been used extensively in semiconductors, where the

muon and its associated paramagnetic centres provide indirect information on isolated

atomic hydrogen, a difficult impurity to isolate and study with conventional methods

[10]. In intrinsic semiconductors, muonium centres exhibit hyperfine interactions between

the unpaired electron and the muon spin which can be used to characterize the local

electronic structure. In fact, almost all the information on isolated atomic hydrogen in

semiconductors comes indirectly through work on muonium. Studies confirm that the

local electronic structure of muonium is virtually identical to that of isolated atomic

hydrogen in the few cases where both muonium and hydrogen can be studied [11], [12].

On the other hand, the dynamics of the muon can be very different from those of hydrogen



Chapter 1. Introduction 4

due to the much lighter mass of the muon.

It is not as easy to obtain equivalent information on muonium in conductive mate-

rials where the unpaired electron spin bound to the muon interacts strongly with the

conduction electrons. In fact it can be difficult to even verify that a local electronic

moment exists in a metallic environment. This is because the large static hyperfine fields

which typify muonium in non-conductors are generally absent in conductors. Instead

the strong exchange interaction between the bound electron on the muon and electrons

in the conduction band is expected to mask any obvious signature of muonium. Never-

theless the presence of such a moment should produce detectable residual effects. For

example, if a paramagnetic muonium atom exits in a simple metal it should behave as a

Kondo impurity [14],[15],[16] and will have a characteristic temperature dependent local

spin susceptibility. In this case the muon Knight shift (defined as (Bhf −H)/H , where

Bhf is the hyperfine field at the muon site and H is the external magnetic field) should

be very large and temperature independent below the Kondo temperature (TK), where

the moment is effectively screened by the conduction electrons. At higher temperatures

where the screening cloud is shaken off, the Knight shift should fall as 1/(T + TK). It

is interesting to note that in the strong coupling limit of the Kondo model a muonium

atom would bind a second electron in a spin singlet state analogous to the Mu− ion [17].

This may be related to the ground state predicted from density functional theory for a

single positive charge in an electron gas [5],[6]. In addition to a large Knight shift one

might also expect muonium in a metal to exhibit an unusually large muon spin relaxation

(Korringa relaxation) due to the large hyperfine interaction between the muon and the

bound electron. This acts to amplify the muon spin-flip scattering with electrons at the

Fermi surface [18].

Empirically, the carrier density and location of the muon in the lattice are important

factors in determining the behaviour of a local moment around the muon in a conductor.
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For example, in metallic alkali metal doped fullerides a vacuum-like muonium atom

(µ+e−) (endohedral muonium) is stable on the inside of the C60 cage. This is evidenced

by the characteristic field dependent spin relaxation rate of muonium undergoing rapid

spin exchange with conduction electrons at the Fermi surface [19]. The interaction of this

local moment with the conduction electrons is very weak, likely due to the low electron

density inside the C60 cage. In other words, the Kondo temperature is negligibly small

and no appreciable screening of the moment is seen. On the other hand muons on the

outside of the C60 cage (tetrahedral muoniums) do not show any evidence for a local

moment. It seems likely that a spin singlet state such as Mu− is formed for this muon

site(s). Such a state may be considered a Kondo impurity but in the strong coupling

limit where the electronic moment is heavily screened. Recently paramagnetic muonium

has also been identified in heavily doped n-type Si [20] with a carrier concentration

in the range ∼ 1019 cm−3. The magnitude and the temperature dependence of the

local spin susceptibility are clear signatures of the same bond-centered muonium seen

in intrinsic Si. Furthermore, the simple Curie-like local susceptibility indicates that the

Kondo temperature in very small; thus one is in the weak coupling limit. It is interesting

to note that the muon-electron hyperfine interaction in heavily doped n-type material is

reduced compared to that of the same centre in intrinsic Si, implying that the electronic

structure depends on the carrier concentrations. A signal with no appreciable frequency

shift was also observed in this experiment; said signal is attributed to the Mu− ion at

the tetrahedral interstitial site. Theoretically this is the predicted stable charge state for

muonium/hydrogen in n-type silicon.

One can interpret the results on doped C60 and n-type silicon as follows: Depending

on the muon site, the Kondo coupling constant J(T ) goes from weak to strong. More

specifically, for muons at the centre of the C60 cage or muons at the centre of the Si–Si

bond one is in the weak coupling limit and thus the full moment is seen down to very
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low temperatures. This can be understood from a local structural point of view since

it may be energetically unfavorable for the muonium atom to bind a second electron,

due to the strong onsite Coulomb repulsion. On the other hand, if the muon is at a

site where the onsite Coulomb repulsion is not too strong, then muonium can bind a

second electron (e.g. Mu−), forming a zero-spin singlet. Under these circumstances the

moment is screened until the singlet state is ionized. This would correspond to the strong

coupling limit of the Kondo model [17]. In normal metals, where the electron density is

Figure 1.1: The range of carrier concentrations nc in various groups of material with
their characterization with respect to experimentally observed muonium.

much higher (∼ 1022 cm−3), no clear evidence of a moment on the muon can be found.

For example in silver the muon Knight shift is small, positive (94 ppm) and temperature

independent, like the Pauli spin susceptibility. This suggests that the local electronic
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structure is a spin singlet (e.g. something like the Mu− ion in which the muon might

bind two electrons in a 1s−like orbit). In the Kondo picture, one is in the strong coupling

limit. The observed Knight shift is then attributed to a small overlap between the muon

and the polarized conduction electron states at the Fermi surface.

Semimetals lie in an intermediate region between a doped semiconductor, where lo-

calized bound states of the muon clearly exist, and good metals, where no such moments

are apparent (see Fig.1.1). Although semimetals have carrier concentrations typical of a

heavily doped semiconductor, at low temperatures they have a well defined Fermi surface.

For example, at low temperatures they exhibit de Haas–van Alphen (dHvA) oscillations

of the magnetic susceptibility from Landau levels crossing the Fermi surface. On the

other hand, at relatively moderate temperatures (above 50 K) they cannot be consid-

ered a degenerate electron gas since kBT becomes comparable to the small Fermi energy.

Indeed, in the semimetal antimony the muon Knight shift is anomalously large at low

temperatures [21] and has a temperature dependence which follows qualitatively what

one expects for a simple Kondo impurity up to about 100 K [22].

1.1.2 Screening in Metallic Media

It is clear that the presence of freely moving charges dramatically alters the charge

screening around a positive impurity compared to an insulator. From the classical elec-

trodynamics standpoint we know that there is no macroscopic electric field inside a metal;

thus a single positive charge must be effectively screened within a few angstroms. To

quantify this statement, we will briefly review the main results of the Thomas-Fermi

(T-F) theory of screening in three dimensions [23].

The semi-classical Thomas-Fermi approximation describes the static response (ω = 0)

at long wavelengths (k ¿ kF ), which corresponds to a slowly varying potential φ(r) as a

function of position r relative to the impurity charge. In this limit, the dielectric function
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can be approximated by

ε(k, ω = 0)T−F = 1 +
k2

T−F

k2
(1.1)

where kT−F =
√

e2

εoε
dn
dµ

is the Thomas-Fermi screening wave number,

dn

dµ
=

∫
g(E)

∂f(E − µ)

∂µ
dE =

∫
g(E)

(
−∂f(E − µ)

∂E

)
dE (1.2)

is the thermodynamic density of states,

f(E − µ) =
1

exp[(E − µ)/kBT ] + 1
(1.3)

is the Fermi-Dirac distribution, n is the electron density, µ is the chemical potential and

g(E) is the density of states.

Now consider the screening of a positive charge. The screened potential is just the

bare Coulomb potential divided by εT−F(k, ω = 0):

Vscr(k) = − e2

εoε

1

k2 + k2
T−F

. (1.4)

The real space potential is given by the Fourier transform of this potential,

Vscr(r) = − e2

4πεoε

exp(−kT−F · r)

|r| , (1.5)

and has the same form as the Yukawa potential in nuclear physics. The important

feature of this potential is that the long-range nature of the bare Coulomb potential is

exponentially suppressed with a screening length scale of lscr = 1/kT−F.

At low temperature where the distribution of electrons is highly degenerate, f(E, µ) =

Θ(µ−E) and its derivative with respect to E is the delta function −∂f/∂E = δ(E−µ),

Eq.(1.2) can be written as dn/dµ = g(µ). In this limit the thermodynamic density of

states is equal to the density of states g(E) taken at the Fermi level EF and

lscr = 1/kT−F ≈ 0.5
( nc

a3
B

)−1/6
(3D free electron gas) (1.6)
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where aB = 0.529 Åis the Bohr radius [23]. For a typical metal (e.g. Cu) Eq. (1.6)

gives k−1
T−F ≈ 0.54 Å. This indicates that the Coulomb potential range is cut off within a

lattice parameter. In a semiconductor, the screening length can be considerably longer

because the carrier concentration is much smaller; for a typical value of nc = 1014 cm−3,

k−1
T−F ≈ 16.8 Å. The opposite limit is at high temperature and low carrier density, where

the electron gas is non-degenerate and follows the Boltzmann distribution. In this case

dn/dµ = nc/kBT and

kD−H =

√
e2

εoε

nc

kBT
(1.7)

This limit is also known as the Debye-Hückel screening limit [1].

It is also interesting to ask what happens in the simple quantum mechanical problem

of a free electron moving in the impurity potential when the screening length lscr gets

long. The impurity potential V (r) then correspondingly deepens and one can expect

that it will be able to bind an electron, i.e. the electron ‘pops out’ of the continuum

into an orbital bound to the impurity site. In poor metals (e.g. YBCO) and semimetals

(e.g. graphite or antimony), the decreasing number of carriers will increase the screening

length and this in turn will extend the range of the impurity potential to the extent that

it may be able to trap or bind an electron.

Historically, the first result which was not based on the T-F approximation was the

erroneous prediction by Mott about the absence of a bound state on a proton. Later, Sach

and Goepert-Mayer concluded that a bound state is still possible if the electron-electron

interaction is taken into account. A further refinement to the original T-F calculations

was done within the Lindhard [24] approximation and within the random phase approx-

imation (RPA), both predicting a lesser degree of screening and an oscillating structure

at larger distances from the impurity. Since the Thomas-Fermi approximation is a long

range approximation it cannot adequately describe the response of the electron gas to a
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short-range perturbation caused by a point-like charge. In order to get a more accurate

description, Lindhard replaced the T-F dielectric function ε(k, 0)T−F with

εL(k, 0) = 1− kT−F

k2
F

( k

2kF

)
(1.8)

where F(z) =
1− z2

4z
log |1 + z

1− z
|+ 1

2

and obtained the following expression for the screened impurity potential

Vscr(r) ∝ x

(2 + x2)2

cos(2kF r)

r3
(1.9)

where x = kT−F/(2kF ) and kF is the Fermi momentum. The main feature of this po-

tential is the oscillatory 1/r3 behaviour also known as Freidel or RKKY oscillations [25].

Ultimately they originate from the sharp cut-off of the Fermi surface.

The common problem with all the calculations mentioned above is in the assumption

that only conduction electrons contribute to the screening cloud. However, it is clear that

if an electron becomes localized into a bound state with the impurity then the interactions

it experiences are very different from those of the free electrons. Thus, in order to develop

a proper screening theory, one must abandon the simplified single-particle approximation

and take into account collective many-body effects present in the bound state as well as

the extended nature of all electron states within the conduction band in a self-consistent

way. Cluster calculations [2],[3], density-functional calculations based on the Hohenberg-

Kohn-Sham formalism [26] , and the ‘jellium’ model provide a foundation for the present

theoretical understanding of the screening problem.

In the early eighties, Popovic and Scott [4] and Almabladh and von Barth [27] pub-

lished the first results which included the non-linear response to screening on a proton

within the local-density formalism. Despite the differences in calculation procedures the

results are in complete agreement: namely, in contrast to the conventional linear response

models, the pile-up charge increases with decreasing rs (rs = [ 3
4πnc

]1/3) and the proton
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is typically screened within 0.6 a.u. independently from rs in the metallic range of den-

sities. Also, all models predicted a very shallow doubly-occupied bound state that can

be regarded as a heavily screened hydrogen ion H−. Furthermore, the hydrogen-like Ho

solution in metals is always found to have higher total energy compared to that of H−.

Note that an extra electron attached to this shallow bound state is screened by the low

energy and hence the long wavelength electrons from the bottom of the conduction band.

Because of this, the screening cloud is rather extended and broadened even further by

the collisions with itinerant electrons. For this reason, this state should be regarded as

a shallow resonance. At the same time, in a different area of condensed matter physics,

Figure 1.2: When the localized state is formed below the continuum of conduction elec-
trons we have a bound state. However, if the state is within the continuum then it is
more appropriate to view this state as a broad resonance or a virtual bound state (VBS).

a remarkably similar concept of the virtual bound state (VBS) was developed to explain

the transport properties of transition and rare earth metals diluted in a non-magnetic

host. The idea of VBS is based on the assumption that if the local impurity potential is
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not sufficient to bind an electron below the conduction band then the electron still can

be localized for a limited period of time in the vicinity of the impurity. This model also

predicted that the effect of resonance scattering would induce a rather narrow peak in

the density of states, also known as the VBS resonance. Fig. 1.2 illustrates the concept

of VBS that if occurs close to the Fermi surface may contribute significantly to specific

heat and resistivity.

1.1.3 Local Moment Formation - Kondo Effect

So far we have considered the results influenced by the impurity charge alone. However

in a real metal, spin degrees of freedom are as important as the charge and under certain

conditions may even modify the properties of the host itself. One of the examples where

such a modification occurs is when an impurity with an electronic moment is submerged

into a non-magnetic host. Because the calculations described in Sec. 1.1.2 unambiguously

predict that the stable state for a hydrogen atom in metals is H− the problem of how the

local moment ‘survives’ in the metallic environment is of great interest. The theoretical

framework for understanding of the local moment phenomena in a non-magnetic host

was put forward by Anderson and later became known as the Anderson model [28]. The

model is described by the following Hamiltonian

HA =
∑

ks

εkc
†
kscks + εo

∑
s

c†dscds +
U

2

∑
s

ndsnd−s + V
∑

ks

(c†dscks + cksc
†
ds) (1.10)

where nds = c†dscds is the number of electrons on the impurity site and cds and c†ds are the

creation and annihilation operators. Because of its importance we describe the model

in detail. For simplicity, we consider a non-magnetic metallic system (e.g. Al) with a

single 3d−transition metal ion (e.g. Fe or Ni) with only one spin-up 3d electron. First,

Anderson introduced a U term which is the increase in the electron energy if another spin-

down electron already occupies the same 3d orbital. He also noted that in the atomic 3d
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orbitals the Coulomb repulsion can be rather large and is of the order of 30 eV. In normal

metals because of the screening and delocalization effects this value is reduced to 1-7 eV

and is still large compared to other interactions. The matrix element V from the last term

from Eq.(1.10) describes the mixture between the 3d electron and the conduction electron

entering or escaping the 3d orbital. Based on this Hamiltonian Anderson predicted that

the local moment formation occurs when the following conditions are satisfied (see Figs.

1.3 and 1.4):

εo + U À EF and εo ¿ EF (1.11)

|εo + U − EF | À ∆ and |EF − εo| À ∆ (1.12)

where εo is the energy of the 3d orbital and ∆ is the resonance state width. Since the

Figure 1.3: Anderson model of local moment formation (from Ref.[28]).

second spin-up electron has energy εo + U this state is not occupied and therefore only
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the spin-up electron fills in the 3d orbital resulting in the local moment formation. On

the other hand, if both εo and εo + U levels are above or below the Fermi level EF the

local moment will not appear (see Fig. 1.4). The effective exchange coupling between the

localized spin and the conduction electrons can be expressed in terms of U and V and is

found to be negative. The width ∆ of the virtual (or resonance) bound state depends on

the density of states at the Fermi level of the host metal and the value of mixing V as ∆ ∝
πV 2g(EF ). Anderson also introduced the π∆/U ratio. He showed that if this ratio is less

than unity then the local moment will form. The magnetic susceptibility of a magnetically

Figure 1.4: Different regimes of the Anderson model depending on a position of a bare
level εo and a magnitude of the U term. In Kondo regime (εo ¿ EF ) a large moment
forms at high T but is screened at low T . In the mixed valence regime, the occupancy of
the impurity level is fractional and moment formation is marginal. In the case of εo > EF

the impurity level is empty and no local moment forms.

dilute alloy as a function of temperature and the U energy was calculated later by Kondo

[30]. Obviously, the local moment will not appear if U=0 and the susceptibility will be

temperature independent reflecting the Pauli paramagnetism (χs = N(EF )µ2
B). When
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U becomes larger and the ratio π∆/U < 1 a localized moment will appear and the

magnetic susceptibility will follow the Curie law. However, as the temperature is lowered

the local moment will disappear due to the dynamic screening involving the interaction

with conduction electrons and the localized spin (see Fig.1.5).

Figure 1.5: Temperature dependence of magnetic susceptibility as a function of the
Coulomb energy U . From ref. [30].

In 1964, Kondo used a concept similar to the Anderson model to explain the existence

of a resistivity minimum in metals at low temperatures. Later, the model became known

as the s− d or Kondo model and is based on the Kondo exchange Hamiltonian [29]

HK =
∑

ks

εknks − J(R − r)S(Rd) · s(r) (1.13)

where s(r) is the conduction electron spin density on the impurity located at point R,

S(Rd) is the impurity spin and J(R − r) is the electron-impurity coupling constant. In

this approximation a local moment is antiferromagnetically coupled to the conduction
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electrons via the exchange interaction J as illustrated in Fig. 1.6. Among the noteworthy

results of this model are:

• Within a certain range of parameters there exists a local moment region which is

indicated by the Curie like susceptibility

χ(T À TK) ∝ 1

4

(gµB)2

kBT
(1.14)

• At very low temperatures the local moment is always compensated by the itinerant

electrons.

Figure 1.6: Local moment formation in strong coupling limit. At high temperatures
a local moment scatters the itinerant electrons. When the temperature decreases the
interaction between the impurity and conduction electrons increases eventually leading
to the spin-singlet bound state formation at T ¿ TK .

Later it was shown that the Kondo model is a special case of the Anderson model with

an appropriate choice of the U parameter and J = 2V 2/εo. At the same time the original

Anderson model was proven to be inadequate at low temperatures where the perturbative

calculations are not valid anymore. The characteristic temperature TK which separate

a perturbative regime from the non-perturbative is called the Kondo temperature. The
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understanding of the region below TK was achieved later by Anderson and coworkers

by applying ideas of scaling. The scaling argument revealed that as the temperature

is lowered below TK , the coupling J will increase and for T →0 K J → ∞. In this

strong-coupling limit, the ground state for the system is a singlet (e.g. non-magnetic

impurity + [e↑e↓], where arrows up and down indicate the itinerant electron spin direction,

see Fig. 1.6) and thus the local moment is effectively quenched which in turn implies

χ(T → 0) = 0. For the rest of the conduction electrons the local moment in the ground

state acts as a non-magnetic impurity with infinite repulsive potential.

However, the transport measurements in alloys with rare-earth and transition ions

unambiguously demonstrated that even at very low temperatures the magnetic suscepti-

bility χ(T ) is not zero and approaches a small but finite value. This contradiction with

the experiments is removed if the residual magnetic excitations to the triplet excited state

are taken into account. The impurity singlet has become polarizable which gives rise to

the impurity-induced electron-electron interaction. An independent confirmation of those

results was provided by Wilson [31] within the ‘numerical renormalization group’ approx-

imation, who studied the low energy excitations of a many-body system on the simplified

Anderson model. With the power of renormalization technique Wilson confirmed that if

the impurity-electron interaction −JSd · s is characterized by the coupling

J = 2 | V | U

Eres(Eres + U)
(1.15)

which is antiferromagnetic because Eres < 0 then above TK the susceptibility χ(T ) is

Curie-Weiss like with a reduced effective moment

χ(T ) ' 0.17
(gµB)2

kB

1

T + 2TK

for TK < T < 20TK (1.16)

whereas below TK the local moment is compensated and the impurity susceptibility χ(T )
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reaches the following limit

lim
T→0

χ(T ) = 0.103(gµB)2/kBTK (1.17)

kBTK ∝ D(g(EF )J)1/2e−1/g(EF )J (1.18)

where g(EF ) is the density of state at the Fermi level and g is the electron g−factor.

Another particularly important approximation based on the Fermi liquid theory was

developed by Nozieres [32] and Yamada [33]. In this approximation, the Landau phe-

nomenology was successfully applied to the impurity problem below TK and allowed

one to calculate the various transport properties, magnetic susceptibility and specific

heat. Nozieres showed that that the low temperature properties are significantly affected

by the impurity which produces a phase shift for the conduction electrons that reaches

δo(kF ) = π/2 at the Fermi energy EF . On the other hand, the most recent theoretical

efforts have been focused on obtaining rigorous results pioneered by the work of Wieg-

mann [34] and Andrei [35]. One of the most remarkable features of these calculations is

that the termodynamic properties of the Kondo system only depend on a single energy

scale given by the Kondo temperature TK . Also a different approach based on the renor-

malization group improved perturbation theory was recently developed by Affleck and

co–workers [36],[37] and shed new light on the nature of a screening cloud, its size and

interior dynamics.

1.1.4 µ+ Screening

Self-consistent theoretical treatment of the local moment formation specific to the muon

was developed by Jena and Singwi [38], Ellis and Lindgren [39] and Estreicher and Meier

[40] within the ‘jellium’ model framework. The most surprising result of their investiga-

tion is that the local enhancement of spin density on µ+ does not scale with the charge

density. Figure 1.7 illustrates the difference. The somewhat oversimplified ‘jellium’
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Figure 1.7: The spin ρs(rµ) density and the charge density ηF (rµ) = Ωe〈| ψ(rµ) |2〉
enhancement factors v.s. the electron spin density. From ref. [9].

model was refined later by the microscopic cluster calculations and the band structure

techniques developed by Mainwood and Stoneham [41], Adachi and Keller [42] and by

Gellat [43], Gupta and Freeman [44], Klein and Pickett [45] and others. In complete

agreement with the generalized calculations for a proton and hydrogen diluted in metals,

the muon calculations revealed that:

• Muon spin density enhancement

ρs(rµ) = [n+(rµ)− n−(rµ)]/(n+
o − n−o ) (1.19)

(where n±o are the unperturbed spin densities and n±(rµ) are the perturbed spin

densities on the muon) does not scale linearly with the charge density ηF (rµ) en-

hancement.
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Figure 1.8: The total charge and spin densities around the muon according to the ‘jellium’
model calculations in an applied magnetic field. The solid line represents the charge
density. From ref. [38].

• The difference between ρs(rµ) and ηF (rµ) increases with rs (see Fig 1.8).

• At low carrier concentration such that rs > 1.9 a.u. (rs ∝ n−1/3) the shallow bound

state forms. No bound state was found below this threshold value.

• Above rs > 1.9 a.u. the contribution to the total spin density from core polarization

can be rather large and negative in sign.

1.1.5 Impurities in 1D S=1/2 Antiferromagnets

Recent theoretical work [46],[47] on 1D spin 1/2 AFM chains suggests that there is a

strong connection between behaviour of an impurity in such a system and in a normal

metal. Although the physics of a spin chain has been a traditional testing ground for
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theorists for the past few decades, only recently with advances in conformal field theory

it has become possible to calculate the correlation functions, the low energy excitation

spectrum and the effects imposed by an impurity [48]. These results based on a theory of

conformally invariant boundary conditions revealed an unexpected behaviour in a S=1/2

antiferromagnetic chain interacting with a non-magnetic single charge impurity.

Traditionally, the magnetic properties of 1D S=1/2 AFM insulators are well described

by the Heisenberg model with anisotropic exchange coupling between the ion spins. By

neglecting the interchain coupling, the model Hamiltonian can be written as

H =
l−1∑

i=1

(
J

2
(S+

i S−i+1) + JzS
z
i S

z
i+1

)
(1.20)

where S+
i and S−i+1 are the S=1/2 raising and lowering operators at site i, l is the

total number of sites and J is the intrachain coupling taken to be positive. However,

unlike S=1 quasi 1D chains where low-energy magnetic excitations exhibit a well known

Haldane gap, these systems can only have a gapless spectrum of magnetic excitations.

The interesting quantum critical phenomena occur when the gapless bulk excitations

interact with a single quantum impurity. For example, it has been shown [49] that the

effects of a non-magnetic impurity can propagate deep into the chain a distance which

is essentially determined by the strength of coupling J between neighboring ions. It is

also predicted that any generic and not site-symmetric perturbation should result in a

renormalization to the completely broken chain. On the other hand, for the site-parity

symmetric perturbation where two adjacent links are equally weakened (see Fig. 1.9),

the impurity effect is considered to be irrelevant and the chain effectively ‘heals’ itself as

T →0.
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J/J/

Figure 1.9: Top: A quantum spin chain with one altered link. Bottom: A quantum spin
chain with two altered links. The possible position of the muon is indicated by the arrow.

From the experimental point of view, the impurity effects will modify the local sus-

ceptibility at any site i of the chain

χi(T ) =
∂〈Sz

i 〉
∂H

|H=0 =
1

T

∑

j

〈Sz
j S

z
i 〉 (1.21)

where H is the applied magnetic field and gµB = kB = 1. Clearly, this local susceptibility

is very different in the bulk and near the perturbed site since the open ends are more

susceptible. As follows from the mean field theory [49], in the case of a completely broken

chain, the local susceptibility has a non-zero alternating part which is a function of the

site index i and temperature

χ(i, T ) = χuni + (−1)iχalt . (1.22)

Perhaps, the most unexpected theoretical result is a large magnitude of the alternating

part of the susceptibility in the completely broken chain (i.e. J ′ = 0 as shown in Fig.

1.10a). The theoretically predicted staggered part of the susceptibility is analogous to
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Freidel oscillations, but for a Heisenberg S=1/2 chain these oscillations increase as one

goes away from the impurity location. This oscillating behaviour is observed to be present

even for small perturbations of one link (see Fig. 1.10b).

In a µSR experiment the positive muon charge should perturb the spin 1/2 chain.

Furthermore, the frequency shift should be a direct measure of the local spin susceptibility

which can be compared with the theory. The local magnetic field Bloc(rµ) at the muon

site is given by the sum of the dipolar fields from all spins of the chains and by the

contact hyperfine field Bc(rµ) on the muon

Bloc(rµ) =
(
z +

∑

j

3rj[rj · zχj]− zχj

|r3
j |

)
Hz + Bc(rµ). (1.23)

Equation (1.23) is simplified if one performs measurements on a powdered sample where

the dipolar part of the local field Bloc(rµ) averages to zero and the frequency shift will

depend only on the contact hyperfine field Bc(rµ).

Recently it became possible to study the effects of the muon perturbation using

quantum Monte-Carlo (QMC) simulations. The theoretically predicted curves are shown

in Fig. 1.11 in comparison to the unperturbed chain susceptibility. Few observations are

in order:

• Because of the renormalization effects, a characteristic maximum observed in the

unperturbed d.c. susceptibility is shifted down to lower temperatures and the

overall susceptibility is increased.

• The location of the maximum and a ratio of the maximum and the zero temperature

susceptibility indicate the perturbation strength.

• For strong perturbations the maximum vanishes completely as shown in Fig. 1.11a.

A special case of the site-parity symmetric perturbation was also theoretically studied by

modeling it with two perturbed links. In this case the logarithmic impurity susceptibility
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at the origin is dominant at low temperatures and the alternating susceptibility χalt only

plays a secondary role. Because of this, the resulting muon signal will effectively measure

the ln(T ) behaviour which has been predicted for the two channel Kondo effect (see

below).

The impurity problem in 1D S=1/2 AFM chains has also been studied in a different

context, namely in its relationship to the Kondo problem in normal metals [47],[51]. The

theoretical description of impurities in a chain can be translated into the Kondo problem

by direct mapping the perturbed link coupling constant J ’ to the Kondo coupling J(T ).

Then the two ends of the completely broken chain can be described by the two-spin

(two–channel) Kondo problem and a semi-infinite chain with an open-end spin coupled

to the impurity is identified with the single–channel Kondo problem. These analogies are

very important since they allow to apply theoretical models and techniques developed

for 1D insulating spin chains to the Kondo problem in metals.
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µSR

In this chapter, we will introduce the µSR (µ+ Spin Rotation, Relaxation or Resonance)

techniques used to obtain the data presented in this thesis1. Sections 2.1 and 2.2 de-

scribe properties of the muon and the fundamentals of muon decay. Section 2.3 deals

with the various µSR signals observed under different experimental conditions, namely

transverse field (TF), longitudinal field (LF) and zero field (ZF). In our experiments,

time-differential LF technique was used to obtain the necessary information on localiza-

tion and mobility of the muon in a graphite lattice. The Knight shift measurements were

used to acquire information on the local electronic structure in the vicinity of a muon

in graphite and LiC6. The TF technique was also used to measure the muon frequency

shift in CPC.

2.1 The Positive Muon as a Magnetic Probe

The muon is the most well studied unstable elementary particle. In this section we

concentrate on the muon properties which are essential for its applications in condensed

matter physics. The muon µ− and its antiparticle µ+ belong to the family of leptons and

are well understood in the framework of the standard electroweak model [53]. The muon

is a spin 1/2 particle and it possesses a magnetic moment µµ = 3.18334539(10)µp [54] and

a gyromagnetic factor γµ/2π = 135.534 MHz/T. Muons, like electrons, have no internal

1Although µSR generally includes both µ+SR (employing the positive muon , µ+) and µ−SR (using
the negative muon µ−), throughout this thesis we refer only to the former.

27
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Muon Properties

Electric charge (µ±) ±e
Spin Sµ ∓h̄/2
Mass mµ 105.659389(34) MeV/c2

Muon/electron ratio mµ/me 206.768262(30)
Gyromagnetic factor γµ/2π 135.534 MHz/T

Magnetic moment µµ 4.4904514(15)× 10−26 J/T
4.84197097(71)× 10−3µB

3.18334539(10)µp

g−factor gµ 2.002331846(17)
Mean lifetime τµ 2.19703(4)µsec

Main decay modes in free space: µ− → e− + νe + νµ

µ+ → e+ + νe + νµ

Table 2.1: Muon properties (from Ref. [55]).

structure and are considered to be true point-like particles. However, unlike electrons,

the muon is not a stable particle and decays with a mean lifetime τµ of 2.19703(4) µsec

[54] via the weak interaction. Properties of the muon are listed in Table 2.1. Despite

the close similarity between the µ+ and µ− properties, their behaviour in matter is

completely different. The negative muon µ− is typically captured in high elliptical orbits

and quickly (though not quickly enough to avoid partial depolarization through spin-

orbit couplings) moves down to the 1S ground state via radiative transitions and Auger

emission. Moreover, since the µ− is about 207 times heavier than an electron, its ground

state wave function has a significant overlap with nucleus, where it has high a probability

of nuclear capture in the process µ− + p → n + νµ. This in turn considerably reduces

the bound µ− lifetime compared to its free value, which is the same as that of the

µ+. Because of these difficulties, the negatively charged muon is not a popular tool in

condensed matter physics, although it still plays a crucial role in nuclear and particle

physics experiments.
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Unlike its negative counterpart, the positive muon may be regarded as a light proton

isotope with a mass of ≈ 1/9mp. Upon implantation in condensed media, the µ+ losses

its energy primarily via ionization and scattering until it reaches an energy range on the

order of a few KeV. This part of the thermalization process occurs within about 50 ps.

The subsequent moderation occurs via a series of charge exchange reactions involving

muonium atom µ+ + e− ↔ Muo. These captures and losses of the electron occur so

rapidly in solids that within a time of about 5×10−13 sec [56] the positive muon is

either neutralized or stabilized as a positive ion. During this stage of the thermalization

process the typical energy of the muon is ∼200 eV. Then inelastic collisions take place

between Mu∗o or the epithermal µ+ and the host atoms, leading to further rapid decrease

in the muon energy down to ≤ 15 eV. The subsequent character of the muon state

depends strictly on the nature of its electronic surrounding. For example, in insulators

and semiconductors under certain conditions, epithermally-formed ‘prompt’ muonium

remains stable; in other cases the stopped µ+ captures one of its own ionization track

electrons to form delayed muonium [57]. Muonium can also participate in chemical

reactions leading to stable diamagnetic compounds or ‘muoniated’ radicals. In normal

metals, because of the rapid charge exchange with free carriers, the muonium state is

ill-defined. The µ+ charge is screened by a cloud of itinerant electrons and its Coulomb

interaction is considerably weakened. Because most of the energy loss occurs through

both elastic and inelastic Coulomb scattering, the muon spin direction remains almost

unaffected and thus the original muon polarization is preserved.

Another important issue is the radiation damage produced by the muon in a sample.

During the thermalization process, the muon collides with atoms and produces interstitial

Frenkel pairs. Therefore, there is a probability that the µ+ might interact with these

lattice defects, which in turn may complicate the interpretation of experimental data.

The resolution of this concern comes from the fact that the process of vacancy creation has
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a significant energy threshold and the vacancy pairs are produced only during the initial

‘hot’ stage of the thermalization process when the muon kinetic energy is high enough to

produce such defects. Beyond that point, the muon will still penetrate deeper into the

sample without creating any more vacancies. The simulations made for graphite assuming

that the displacement threshold is set at Ed = 50 eV indicate that a distance between

the last displacement and the thermalized µ+ is on the order of 9000 Å. Therefore, in

our interpretation of experimental data on graphite, one can neglect the muon-defect

interaction.

2.2 Muon Production

In order to conduct µSR experiments, a high purity, highly polarized muon beam is

required. In modern accelerators (e.g TRIUMF), the beam of polarized muons is generally

produced by bombarding a target (e.g. carbon or beryllium) with high energy protons

Ep ≥ 500 MeV. The dominant nuclear reactions for µ+ production and decay are:

p + p → π+ + p + n (2.24)

p + n → π+ + n + n (2.25)

π+ → µ+ + νµ (2.26)

µ+ → e+ + νe + νµ (2.27)

The π+ mesons decay into positive muons and muon neutrinos. Consider this decay

in the pion rest frame. Since the pions have no spin and neutrinos have helicity -1

then, by conservation of angular momentum, the muon spin Sµ must be aligned opposite

to its momentum pµ (see Fig. 2.12 and Table 2.2) and the µ+ acquires a 100% left–

handed polarization in the rest frame of the pion (i.e. each muon’s spin is aligned

opposite to its momentum). If the pion is not at rest in the laboratory frame then
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the beam polarization and its direction will depend on the tune of the beamline. So

called ‘backward’ muons are produced by tuning the last part of the beamline for lower

momentum than the front end where the pions are selected. This yields a µ+ beam with

right-handed polarization of 80−90% and a typical momentum of 50−90 MeV/c, useful

for thick-walled pressure vessels and glass containers for liquids. Polarized negative muon

beams are always produced from π− decay in flight due to the immediate nuclear capture

of negative pions stopped in the production target.

Properties

π+ → µ+ + νµ

Energy conservation Eπ = mπc2 = Eµ + Eν

Momentum conservation pπ = 0 =⇒ pµ = −pν

Angular momentum conservation Sπ = 0 =⇒ Sµ = −Sν

Table 2.2: Positive pion decay and associated conservation laws.

Figure 2.12: Pion decay as viewed in the rest frame.

These stopped positive pions decaying near the surface produce the high quality low-

energy µ+ beams also known as ‘Arizona’ or ‘surface’ muons [58]. Such a beam has several

advantages. First, the surface muons have their spins pointing backwards with respect

to their momentum, with a polarization close to 100% (|P µ| = 1). Second, the muons
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are low energy (〈|pµ|〉=29.8 MeV/c and have a stopping range Rµ+ = 140 mg/cm2 in

water) that allow the performance of experiments on thin samples, thick superconducting

films, organic materials and gases. One disadvantage is the beam contamination by

positrons. To solve this problem, electrostatic velocity selectors utilizing crossed magnetic

and electric fields are used [59].

Figure 2.13: Muon decay.

A positive muon stopped in a sample decays according to the following reaction:

µ+ → e+ + νe + νµ. Because of the 3-body nature of the decay, a positron leaving the

sample can have a range of kinetic energies ranging between 0 and Emax = 1/2mµc
2[1 +

(me/mµ)2] − mec
2 = 52.320 MeV. The maximum energy Emax is achieved when the

neutrino νe and antineutrino νµ are emitted in the same direction (see Fig. 2.13). The

only particle detected in µSR experiments (other than the muon itself) is the decay

positron. The positron is preferentially emitted in the direction of the muon spin; this
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allows the reconstruction of the muon polarization in the sample. This is a remarkable

consequence of parity violation in weak decays. It follows from the electroweak theory

that the probability of positron emission with an energy range ε, ε + dε and solid angle

Ω, Ω + dΩ, at time t, t + dt obeys

dW (θ, ε, t) = W (t)Θ(θ)E(ε)dε
dΩ

4π

dt

τµ

(2.28)

W (t) = exp(−t/τµ) (2.29)

Θ(θ) = 1 + A(ε) cos(θ) (2.30)

E(ε) = 2ε2(3− 2ε) (2.31)

A(ε) = (2ε− 1)/(3− 2ε) (2.32)

where τµ is the muon mean lifetime, ε = E/Emax is the reduced positron energy, the angle

of positron emission θ is measured relative to the muon spin orientation (which defines

θ = 0o) and A(ε) is the energy dependent asymmetry in the Θ(θ) distribution (see Fig.

2.14).

A simple analysis shows that the asymmetry reaches its maximum value when positrons

are emitted with Emax = 52.320 MeV. The same asymmetry factor averaged over all pos-

sible values of ε (〈E〉 = 35 MeV) is equal to 〈A〉 = 1/3 (see Fig. 2.15). The low energy

positrons with kinetic energies ε <0.5 are preferentially emitted in the direction opposite

to the muon spin, reducing the asymmetry factor; thus the average asymmetry factor Ao

can be effectively increased by removing these low energy positrons using a degrader.

2.3 µSR Signals: LF, ZF and TF Measurements

The muon polarization P µ(t) evolves in time according to the distribution of internal

magnetic fields. The purpose of a typical TF µSR experiment is to reveal this information

via the measurement of the asymmetry of decay positron as a function of time.
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Figure 2.14: Muon energy spectrum.

A simplified sketch of a typical setup used in µSR experiments is shown in Fig. 2.16a.

The incoming muons are detected in a thin scintillator (M) which triggers ‘start’ (t = 0)

signal on a TDC (‘clock’) and opens a data gate (typically <10 µsec). Upon implantation

the muon spin is aligned opposite to its momentum and the positron emission follows

the Θ(θ) distribution. This pattern evolves in time according to the distribution of

internal magnetic fields. A positron produced in the muon’s decay is registered by another

scintillator (E) designed for this purpose. The signal from the positron counter is used

to stop the clock. Each muon lifetime is then individually recorded in a time histogram

on the on-line computer. The length of the data gate sets a limit on the rate of incoming

muons which is typically on the order of 105 events/sec or less.
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Figure 2.15: Θ(θ) distribution of positrons: a) integrated over all energies and b) with
maximum energy Emax of 52.320 MeV.

In the absence of any external or internal magnetic fields, the ith positron counter

whose effective angle makes an average angle φi with respect to the muon polarization

will register the following distribution of decay times

Ni(t) = N o
i {exp(t/τµ)[1 + Ao

i cos(φi)] + Bi} (2.33)

where N o
i is a normalization constant, Ao

i is the average positron asymmetry and Bi is

the time-independent background fraction of uncorrelated ‘noise’ events. In an applied

magnetic field H , the muon spin starts precessing with the Larmor frequency ωµ = γµ|H|.
If H is perpendicular to the initial muon polarization P (0) then the Θ(θ) distribution

rotates as a whole with the same angular frequency ωµ which is reflected in Ni(t) as

Ni = N o
i {exp(−t/τµ)[1 + Ao

i cos(ωµt + φi)] + Bi} (2.34)
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Figure 2.16: a) A conventional TF µSR setup. The magnet is omitted for clarity. b) A
histogram of time differences between muon implantation and decay as detected by the
single positron counter (courtesy of J. Brewer).

In a real µSR experiment, the implanted muon ‘feels’ the magnetic environment Bint

of a sample which includes, but not limited to, the externally applied magnetic field

H . The internal field is often random in direction, magnitude or time, and usually

fluctuates and depolarizes the muon spin. In order to account for this effect we need
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to modify Eq. (2.34) by replacing the cos(ωµ + φ) term with a spectrum of frequencies,

i.e. Gxx(t) cos(〈ωµ〉t + φi). The envelope of these oscillations is called the transverse

relaxation function Gxx(t). If the average precession frequency is given by [60]

〈ωµ〉 = γµ〈B⊥
int〉 (2.35)

then the number of positron counts Ni(t) is

Ni(φ, t) = N o
i {exp(−t/τµ)[1 + Ao

i Gxx(t) cos(〈ωµ〉t + φi)] + Bi} (2.36)

Equation (2.36) is a foundation of µSR data analysis. By fitting the Ni(t) histograms in

the time domain one can obtain the two fundamental quantities of interest: the average

frequency 〈ωµ〉 and the relaxation function Gxx(t). The latter gives us important clues

about the nature of the internal magnetic fields; it can be of static or dynamic origin.

For example, the simplest case of static depolarization corresponds to inhomogeneous

broadening, where, instead of a single Larmor frequency ωo one observes a spectrum of

frequencies distributed around ωo with a width σ.

The overall richness of magnetic phenomena studied by muons is vividly illustrated

by the large number of theoretical depolarization functions available to experimenters.

A particularly important case is the effect of randomly oriented static dipole moments

on the µSR signal measured in an applied transverse field (TF) H = Hz. The dipolar

fields Bdip from the surrounding magnetic moments are weak, typically not more than a

few gauss. Assuming that the applied magnetic field H is much bigger than the average

sum Bzdip
of the z components of the dipolar fields and that these components have a

Gaussian distribution with [60]

〈∆B
2
zdip
〉 =

1

6
I(I + 1)µ2

Ng2
I

( µo

4π

)2 ∑

i

[1− 3 cos2(θi)]
2

r6
i

, (2.37)

where ri is the distance to nuclear spin Ii and θi is its angle with respect to the direction
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of H , the muon precession frequencies will be distributed with a mean square deviation

σ2 =
1

2
〈∆ωµ

2〉 =
1

2
γ2

µ〈∆B
2
zdip
〉 (2.38)

and the superposition of the precession signals will have the following time dependence

〈cos(ωµt)〉 = exp (−σ2t2) cos(ωot). (2.39)

As seen from Eq. (2.39), the µSR signal is still precessing at the mean Larmor

frequency ωo but is damped by the Gaussian factor (see Fig. 2.17)

GG
xx(t) = exp (−σ2t2). (2.40)

This effect of random static dipoles on the muon can also be described as a process

Figure 2.17: Typical Gaussian relaxation envelope function used to analyze TF data.

in which the muon spin is subjected to the different internal fields Bi
zdip

whose effect

is to gradually decrease the phase coherence (dephasing) in the plane perpendicular to

applied magnetic field H . Since this dephasing can be reversed by a ‘π pulse’ of RF at

the resonant frequency, resulting in a ‘spin echo’ [61], it is technically incorrect to refer

to it as ‘relaxation’; nevertheless, this terminology is virtually universal in µSR.
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2.3.1 Longitudinal and Zero Field Measurements

All the relaxation mechanisms presented so far have a direct analogy in NMR. However,

with the introduction of µ+ beams, a new class of condensed matter experiments has

been successfully developed. In this section we introduce zero field (ZF) and longitudinal

field (LF) techniques. In the case of longitudinal field (applied field H in the direction of

the initial muon polarization) the natural quantization axis is also in the beam direction.

For conventional LF measurements, the positron detectors are arranged in front of and

behind the sample (as ‘seen’ by the muon beam) and are usually labeled as forward (F)

and backward (B) (see Fig. 2.18). The number of registered positrons is described by

Eq. (2.36) with φB = 0o, φF = 180o and ωµ = 0:

NB,F (φ, t) = NB,F
o {exp(−t/τµ)[1 + AB,F

o Gzz(t) cos(φB,F )] + BB,F}. (2.41)

In the zero field case, the muon spin will precess around local axes in the jth site with

angle δj and with frequency ωj. The time evolution of the longitudinal components of

the polarization vector G(j)
zz (t) in the jth site is then given by

G(j)
zz (t) = cos2(δj) + sin2 δj cos(ωjt). (2.42)

Averaging over all possible directions of the local magnetic fields gives

〈G(j)
zz (t)〉 =

1

3
+

2

3
〈cos(ωjt)〉 (2.43)

and averaging over a Gaussian frequency distribution gives the famous Kubo-Toyabe

result [65]

GGKT
zz (t) =

1

3
+

2

3

(
− 1−∆2t2

)
exp

[
− 1

2
∆2t2

]
(2.44)

where ∆2 = γ2
µ〈B2

loc,x〉 + γ2
µ〈B2

loc,y〉 = 2γ2
µ〈B2

loc,z〉. By inspecting Eq.(2.44) one can see

that initially GGKT
zz (t) decays faster than GG

xx(t) (see Eq. 2.40) with the effective ∆ =
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√
2γ2

µ〈B2
loc,z〉 =

√
2σ. This can be intuitively understood since in the strong transverse

field only the z components contribute to the dephasing of the muon spin, whereas

both the x and y components participate in the LF relaxation process. In other words,

LF measurements provide the same information as TF measurements but with higher

sensitivity [66].
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Figure 2.18: General LF µSR setup showing the sample and three counters. The mag-

netic field is applied parallel to P µ (courtesy of J. Brewer).
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2.3.2 Relaxation due to itinerant electrons

Typically, in a normal metal the relaxation processes due to conduction electrons play

an important role and can be dominant when there are no localized electronic moments.

In the case of the muon, the relaxation process can be pictured as a muon spin flip by

conduction electron spins. In the Born approximation, the relaxation rate 1/T1 is given

by [62]

1

T1

=
4π

9
h̄3µ2

oγ
2
µγ

2
e | ψ(0) |4 g(EF )2kBT (2.45)

where ψ(0) is the s electron spin density on a muon and g(EF ) is the density of states at

the Fermi level. However, it can be shown [67] that the effect of the direct spin relaxation

by free carriers is practically undetectable on the µSR timescale. On the other hand, the

µ+ spin still can be relaxed indirectly if the system contains paramagnetic spins strongly

coupled with the muon spin. In Section 4 this type of relaxation will be discussed in

more detail.

2.3.3 Muon Knight Shift

In the presence of an external magnetic field H , the total field Bµ(rµ) at the muon site

consists of the following macroscopic and microscopic or hyperfine contributions (in this

section we follow discussion presented in [68] by Schenck and Gygax)

Bµ(rµ) = H + Bmacro + Bmicro(rµ) (2.46)

Bmacro ≡ BL(M) + Bdemag(N ,M ) (2.47)

The terms in Bmacro are proportional to the bulk magnetization M and represent the

macroscopic part of the total field and will be discussed in Sec. 2.3.4. The microscopic

part is composed of dipolar fields and the contact hyperfine field

Bmicro(rµ) = Bdip(rµ) + Bc(rµ) (2.48)
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Bdip(rµ) =
µo

4π

∑
ri

3ri(µi · ri)− µi(ri · ri)

r5
i

(2.49)

Bc(rµ) =
8π

3
〈|ψe(rµ)|2〉F χH (2.50)

where µi is a dipole moment at a distance ri from the muon, 〈|ψe(rµ)|〉F is the spin

density of conduction electrons at the µ+ averaged over the Fermi surface and χ is the

local electronic spin susceptibility. Clearly the contact term is only present when there

is a finite s electron spin density at the muon site.

Let us consider the effect of the induced hyperfine field on the muon spin. In the free

electron approximation, the contact hyperfine field on the µ+ induced by the polarized

conduction electrons is [69]

Bc(rµ) =
8π

3
µB

[
n+(rµ)− n−(rµ)

]
(2.51)

where n+(rµ) and n−(rµ) are the corresponding perturbed electron spin-up and spin-

down densities at the muon site rµ and their difference is the net induced spin density on

the muon. As a result there will be a small addition to the Larmor frequency ωµ = ωo+ωc

and ωc will be proportional to the applied magnetic field . This frequency shift can be

conveniently expressed as the dimesioneless ratio

Kc =
ωc − ωo

ωo

=
Bc(rµ)−H

H
(2.52)

known as the Knight shift. Within the free electron gas approximation, one can also

derive a relationship between electron spin susceptibility χs and the Knight shift [60]

Kc =
8π

3
µB

[n+(rµ)− n−(rµ)]

n+
o − n−o

(n+
o − n−o

H

)
(2.53)

where n+
o − n−o = χsH/µB (2.54)

where we have introduced the average unperturbed conduction electron spin density no.

Finally, the Knight shift can be expressed in terms of the spin density enhancement factor
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ρs(rµ)

Kc =
8π

3

[n+(rµ)− n−(rµ)]

n+
o − n−o

χs ≡ 8π

3
ρ(rµ)χs. (2.55)

Equation (2.55) means that if the only effect of the applied external field is the re-

population of spin-up and spin-down conduction electrons and if ρ(rµ) is temperature

independent then the Knight shift will follow the Pauli paramagnetic susceptibility. This

result is confirmed by the majority of measurements on simple metals [70],[71],[72],[73],

where with a few exceptions (i.e. Bi, Sr, Ga and Sb), the measured Knight shift is found

to be small (< 100 ppm), positive and almost independent of temperature and magnetic

field. On the other hand, any deviations from Eq. (2.55) would indicate that the local

spin susceptibility is different than that of the bulk.

To gain an insight into some other possibilities [67], we will rearrange the spin density:

n+(rµ)− n−(rµ) ≡ n+ | ψ+(rµ) |2 −n− | ψ−(rµ) |2

= 1/2(n+ − n−)
{
| ψ+(rµ) |2 + | ψ−(rµ) |2

}
(2.56)

+1/2(n+ + n−)
{
| ψ+(rµ) |2 − | ψ−(rµ) |2

}
.

The first term in Eq. (2.56) only needs to be evaluated at the Fermi surface; by neglect-

ing any difference between the wave functions of spin-up and spin-down electrons and

assuming that (n+ − n−) ∝ H [via the spin susceptibility, see Eq. (2.54)] we arrive at

the same result as in Eq. (2.55), which represents a direct or ‘contact’ interaction on the

muon. However, the exchange interaction between spin polarized electrons on the Fermi

surface and the electrons occupying levels below the Fermi level can lead to wavefunction

distortions and result in a spin polarization at the µ+ opposite in sign to that of the

electrons at the Fermi surface [60]. This effect is known as core polarization and is often

used to explain a negative sign of the measured Knight shift; the core polarization is then

considered to be a dominant factor. The second exchange term in Eq. (2.56) describes

this core polarization effect.
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A few notes on the specifics of Knight shift measurements with muons are in order. In

a conventional TF µSR experiment the muon frequency shift is determined by measuring

the µ+ Larmor frequency ωµ with respect to a well defined reference signal ωr. The µ+

Larmor frequency is given by ωµ = γµ|Bµ(rµ)| where γµ/2π = 135.5387 MHz/T. If we

neglect the ‘macro’ contributions to the total field Bµ(rµ) at the muon site, the µ+

frequency ωµ can be expressed in terms of the known internal fields as

ωµ = γµ

√
|H + Bdip(rµ) + Bc(rµ)|2 (2.57)

= γµH

√
1 +

2

H2
(Bdip + Bc) ·H +

1

H2
(Bdip + Bc)2

If we assume that |H| À |Bdip| and |H| À |Bc|, the expression for ωµ can be simplified:

ωµ ≈ γµH

√
1 +

2

H2
(Bdip + Bc) ·H) (2.58)

≈ γµ

(
H +

1

H
(Bdip + Bc) ·H

)
.

The extra field (Bdip + Bc) ·H/H induced at the muon site causes the muon frequency

shift. One can define a muon Knight shift constant Kµ = Bc ·H/H2 which depends only

on the contact interaction2 [60]. For the purpose of practical calculations, in the com-

mon case of axially symmetric systems, the muon Knight shift is given by the following

standard expressions [60]

Kµ =
1

3
Kiso

[
(χ‖+2χ⊥)+2(χ‖−χ⊥)P2(cos θ)

]
+

1

3
Kdip

[
(χ‖−χ⊥)+2(χ⊥+2χ‖)P2(cos θ)

]

(2.59)

where

Kiso =
1

3
(K‖ + 2K⊥) (2.60)

and Kdip =
1

3
(K‖ −K⊥) (2.61)

2Alternatively, one could also include a dipolar term as a part of the Knight shift [68].
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are the contact and dipolar parts of the Knight shift, measured via K⊥ andK‖ by applying

an external magnetic field H parallel and perpendicular to the crystal axis, and θ is the

angle between the applied magnetic field and the axis of crystal symmetry.

A few general comments on the Knight shift are in order. First, it is important

to realize that the measured Knight shift Kµ carries a wealth of information on the

local electronic structure in the vicinity of a muon; the main difficulty is to separate

the various contributions to the shift. For instance, at muon sites in materials with

cubic symmetry, or in powders, the sum of dipolar fields averages to zero. Therefore in

powdered samples the Knight shift is not influenced by the dipolar interactions and the

only contribution comes directly from the contact interactions. On the other hand, there

will be a distribution of dipolar fields which broadens the µSR line (so called powder

broadening [61]). Second, in the presence of a local moment Kiso carries the information

on the exchange interaction between itinerant electrons and the local magnetic moment.

Unfortunately, the detailed interpretation of Kiso is complicated by the specifics of the

electronic structure in the vicinity of the muon. On the other hand, the dipolar part Kdip

is less susceptible to the disturbances introduced by the muon and is a measure of the

atomic susceptibility (or local moment) of the nearest neighbors to the implanted µ+.

2.3.4 Macroscopic (Bulk) Contributions

In addition to the microscopic fields seen by an implanted µ+ there will be another im-

portant contribution specifically attributed to the macroscopic demagnetization fields in-

duced by an external magnetic field. This macroscopic contribution to the local magnetic

field found in homogeneously magnetized medium is proportional to the bulk magnetiza-

tion and can be conveniently subdivided into two parts: the demagnetization field Bdemag
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and the Lorentz field BL

Bdemag = µoNMM (2.62)

BL =
1

3
µoMD (2.63)

where NMM is bulk magnetization and and MD is the magnetization inside the Lorentz

sphere. The Lorentz sphere is a fictitious construction that provides an interface between

the continuum magnetization picture and its microscopic components. The Lorentz con-

struction and the magnetic fields associated with it are schematically illustrated in Fig.

2.19. Note that the magnetic field outside of the Lorentz volume ΩL depends on the

bulk macroscopic magnetization MM and therefore is shape dependent. The shape de-

pendence is introduced via the demagnetization factor N which is generally a tensor

quantity. In practice its value can be calculated analytically only for a very limited num-

ber of shapes (e.g. ellipsoids, certain types of cylinders and planes) and generally must

be evaluated numerically [74],[75]. The volume V outside of the Lorentz sphere is treated

as a continuum, whereas the residual magnetic field

B0dip(rµ) =
µo

4π

∑

ΩL

3rj(µj · rj)− µj(rj · rj)

r5
j

(2.64)

within the volume ΩL is a subject of microscopic calculations and typically requires

numerical summation over the large number of dipolar moments. Notice that for a

spherical volume ΩL the residual dipolar field B0dip must be independent of ΩL, given a

sufficiently large volume. In practice, under certain conditions listed in Table 2.3.4, the

overall macroscopic contribution is significantly simplified.
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Figure 2.19: Macroscopic fields in the Lorentz sphere.

B0dip = 0 a lattice site with cubic symmetry

(e.g. octahedral or tetrahedral interstitial sites)

〈B0dip〉 = 0 for an isotropic distribution of dipolar moments

(for example, polycrystals in the paramagnetic state)

BL + Bdemag = 0 for spherically shaped samples (N=1/3) and completely

saturated magnetization (MM = MD ≡ M sat)

or for paramagnets with MM = MD ∝ χsH

H = Bdemag = 0 in the absence of any external magnetic field (H = 0) in

non-magnetic samples (MM = 0)

MD = MS in ferromagnets with spontaneous magnetization MS

MM = MD = M sat for perfectly saturated magnets at T = 0

MM = MD ∝ χsH for paramagnetic samples in an applied magnetic field H

with paramagnetic susceptibility χs

Table 2.3: Macroscopic contributions to the local field in some special cases.



Chapter 3

Apparatus and Electronics

3.1 Knight Shift Apparatus

All the Knight shift measurements reported in this thesis have been performed on the M20

and M15 beamlines at TRIUMF, which provide a beam of nearly 100% spin polarized

positive surface muons with a momentum of 29.8 MeV/c. The muon spin polarization was

rotated perpendicular to the axis of the superconducting solenoid and the muon beam

direction. The graphite samples were cut from high purity, highly oriented pyrolytic

graphite (HOPG) with c axis aligned to better than 2 degrees. A single piece or five pieces

were used depending on whether the field was applied in parallel or perpendicular to the

average c direction respectively. Although the frequency shift scales with magnetic field

the amplitude of the µSR signal decreases at higher fields when the period of the Larmor

precession frequency becomes comparable to the timing resolution of the detectors. Thus,

the magnitude of the applied magnetic field was chosen to be 1.45 T.

In order to make precise Knight shift measurements a novel µSR technique was used

to collect the data on a sample and a reference simultaneously [76]. Figure 3.20 shows a

schematic of the apparatus used for frequency measurements at low temperatures. The

helium flow cryostat has been omitted for the purpose of clarity. The collimated muon

beam passes through a thin plastic scintillator (M) before entering the cryostat. The

crucial element of the setup is the second thin muon counter (Ms) in the sample space

of the cryostat. Light from the edges of the Ms counter is reflected down the axis of a

49
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hollow light guide (covered with silverized mylar) and out the back end of the cryostat

to a photomultiplier (not shown). The Ms scintillator is tightly sandwiched between the

sample on the downstream and the reference just upstream. The reference is an annular

disk of high purity silver foil (99.99%) with a 1 cm diameter hole at the centre. About

half of the incoming muons stop in the reference without triggering Ms while half pass

through the hole, trigger the Ms counter and then stop in the sample. This allows us to

cleanly distinguish muons stopping in the sample from those stopping in the reference.

Figure 3.20: Schematic of the apparatus for precise measuring two µSR spectra simul-
taneously.

Such a detector arrangement has several advantages. Most importantly, it allows us

to collect µSR spectra on the reference and the sample simultaneously, thus eliminating

many of the systematic effects (e.g. drift in an external magnetic field, thermal con-

traction, instabilities in electronics, changes in the beam properties, etc.). Second, the
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sample spectra are exceptionally clean and have no detectable signal from the reference or

elsewhere. This eliminates other errors due to the variations in background to foreground

ratio which can influence the frequency measurement. Note, in general, the background

and foreground signals are very close in frequency and are thus not easily distinguished.

The statistical accuracy on individual frequencies is about 2 ppm after about an hour of

data collection (∼107 events) and the systematic error on the frequency shift is estimated

to be at about the same level.

A similar geometry was used for measurements above room temperature. However,

in this case the second muon counter and a silver mask were placed just outside the oven

and 20 mm in front of the sample. This was necessary since it is not possible to use a

plastic scintillator at high temperatures.

In order to test for ‘cross talk’ between the two channels (sample-reference) we ran a

control experiment with Al2O3 at the sample position. Since Al2O3 at RT produces no

muon precession signal at the Larmor frequency, any observed signal can be attributed to

false routing or range strangling in the thin Ms detector. Figure 3.21 shows the Fourier

transforms for the sample and the reference respectively. A very small precession signal

in the top picture demonstrates that there is at most a 3% background signal in the

sample histograms. In order to keep the background small at low temperatures, where

the He gas density can be rather large, it is important to pump hard on the sample space

in order to minimize range straggling. Muons which stop in the Ms counter give rise to

a background signal in the sample histograms from the plastic scintillator. ‘Cross talk’

in the other direction is also quite small as evidenced by the fact that the asymmetry in

the reference spectrum (Aµ = 0.211) is consistent with the maximum experimental value

(obtained with Ag at the sample position) indicating that there is a little Al2O3 signal

(< 5%) in the reference histograms. False routing in this direction is mostly attributed

to inefficiency in the Ms counter.
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Figure 3.21: Real amplitude of muon precession signal in a transverse magnetic field of

1.45 T. In a) Al2O3 at the sample position and b) Ag foil at the reference position [76].
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3.2 Electronics

The time-differential (TD) electronics corresponding to the setup described above is

shown in Fig. 3.22. Before we describe the sequence of events that takes place in elec-

tronics let us consider a few general points relevant to our detection system. When a

charged particle such as a muon or a positron passes through a plastic scintillator it de-

posits energy which is converted to photons. For example, a typical ‘surface’ muon with

a kinetic energy of 4 MeV passing through a 2.5 mm thick scintillator generates about

4600 photons. The thickness of the muon counter (1.4 mm) is chosen to ensure almost

100% efficiency in µ+ detection. On the other hand, a positron with the kinetic energy

of 50 MeV passing through the same counter gives rise to about 500 photons. In this

way, one can easily distinguish the pulses originating from different particles by setting

up an appropriate threshold level on a discriminator for the muon to eliminate positrons

and other background particles. In our setup the positron detectors have a thickness of

6 mm. A positron (〈Ekin〉 = 35 MeV) passing through such a counter produces about

2000 scintillating photons which is sufficient to guarantee a very high positron detection

efficiency. Light produced by the particles is then guided to the photomultipliers (PMs)

held well outside of the magnet and shielded with iron and µ-metal since the PM tubes

do not work in high magnetic fields.

A good start event is defined logically as a muon with no prior muon with a pile-

up time P and no post muon within the data gate D (S=TM·P where TM indicates a

triggered muon counter). A good stop event E=Π · P consists of a single positron Π

within the data gate time D. This ensures that the digitized time between the S and E

signals corresponds to the decay of a single muon. The measured time range is limited

by the data gate length D which is typically set at ∼ 5τµ. A single slot VME based

TDC (B980 TDC) is used to digitize the time. This module is an eight-channel TDC
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with a timing resolution of 48.828 psec (50 ns/1024) and a full time range of 25.6 µsec

(or 524288 bins per histogram). The reference and the sample events are separated

according to the following logic. When a good event occurs and the µin (µin indicates

that the internal muon counter is triggered) signal present then such an event was routed

to the sample section of the histogramming memory module. The same sequence applies

to the reference event given that the µin is not triggered. The 256 nsec delays are present

in positron electronics in order to accumulate the events that occur before the muon

is detected. This provides a convenient measure of the uncorrelated events (random

background B) observed in µSR experiments.
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Figure 3.22: Electronics scheme with a multi-channel VME clock.
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HOPG Results and Discussion

4.1 Introduction

Graphite is a semimetal representing one of the four known carbon based crystal struc-

tures (see Fig. 4.23). Monocrystalline graphite may have either a hexagonal or a rhom-

bohedral lattice. In the hexagonal lattice the atoms in one layer are exactly above or

under the centres of the hexagons of the neighboring layers. Figure 4.24 illustrates the

hexagonal graphite crystal structure. A right angle prism having a regular rhomb as its

base serves as a unit cell for the graphite lattice and is described by the fundamental

translation vectors a1, a2 and a3

a1 = (ao, 0, 0), a2 = (ao/2,
√

3ao/2, 0), a3 = (0, 0, co) (4.65)

where |a1| = |a2| = ao =
√

3 and |a3| = co = 6.7076 Å. A unit cell of the hexagonal

lattice contains 4 carbon atoms. The perfect graphite lattice is included in the spatial

symmetry group P63/mmc (or D4
6h) [77].

HOPG (highly oriented pyrolytic graphite) has crystalline order extended to about

1 µm within a basal plane, and to about 0.1 µm along the c direction. HOPG has no

long-range in plane alignment with the a-axes of adjacent crystallites randomly oriented.

However, HOPG shows a high degree of c-axis alignment with misalignment angles of

less than 1 degree between adjacent crystallites [78]. HOPG is the material of choice for

fundamental studies when large size crystals are required.

56
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Within a single layer the carbon atoms form a perfect hexagonal lattice which is a con-

sequence of the equivalence of the three bonds of the carbon atoms with the three nearest

neighbors in the layer. The described arrangement takes place in the sp2-hybridization

and is illustrated in Fig. 4.24. The carbon atoms in a plane are linked by directed σ-

bonds, whereas the overlapping of unhybridized p-orbitals forming the isotropic π-bonds

are mostly responsible for the semimetallic properties of graphite. The high mobility of

π electrons causes a high electric in-plane conductivity. Thus at non-zero temperatures,

the single graphite layer resembles in its properties a quasi 2D metal.

Graphite has a small free carrier concentration (nc = 3×1018 cm−3) and a correspond-

ingly narrow conduction band width (0.023 eV). The low carrier density lifts the electron

gas degeneracy in graphite [80],[81] and is responsible for the variation of the Fermi en-

ergy with temperature as shown in Fig. 4.25a. The galvanometric measurements [82]

performed over a wide temperature range show a substantial increase in carrier density

from 3×1018 cm−3 at 4.2 K to about 18×1018 cm−3 at RT (see Fig.4.25b). This increase

is especially noticeable around 50 K, close to the graphite degeneracy temperature of 100

K. The temperature dependent Fermi level and the carrier density indicate that unlike

normal metals where the degree of smearing of the Fermi surface is very small (∼ 0.025

eV), in graphite the large number of free carriers can participate in the scattering pro-

cess (see Fig. 4.26a). Because of the low carrier concentration (2rs ∼ 81 a.u.), one can

also anticipate that a implanted muon is significantly underscreened in such a material

compared to a normal metal. Consequently, the Thomas-Fermi wave vector kT−F ∝ n1/6
c

in graphite is only 0.34 Å−1 (see Eq. 1.6).

Graphite also has historic significance since it was the first material on which muon

spin rotation was performed to confirm parity violation in weak interactions. However

very little work has been done on it since that time. For example, it is known that the

Knight shift at room temperature is unusually large [83]. There has also been a recent
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Graphite Diamond

Backyball Nanotube

Figure 4.23: All presently known forms of carbon based structures: graphite, diamond,
buckyball and nanotube (from Ref. [79]).

study of the spin relaxation state at high temperatures which we shall discuss later.

Additional scientific motivation for understanding the behaviour of hydrogen in graphite

is that related compounds are used as the negative electrode in lithium batteries. It has

been reported [84],[85] that there is a strong correlation between lithium capacity and

the content of hydrogen in graphitic compounds.
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Figure 4.24: Top: A hexagonal crystal lattice of graphite. The letters A and B denote
non-equivalent graphite layers. Bottom: An overlap of the carbon wave functions involved
in σ−bonds formation.

4.2 Experiment

All measurements have been performed on the M20 or M15 beamlines at TRIUMF,

which provide a beam of nearly 100% spin polarized positive surface muons with a mean

momentum of 28 MeV/c. The spin polarization was rotated perpendicular to the axis



Chapter 4. HOPG Results and Discussion 60

Figure 4.25: Concentration of free carriers as a function of temperature in graphite. From
ref. [82]

of the superconducting solenoid and muon beam direction. The samples were cut from

highly oriented pyrolytic graphite with c axis aligned to better than 2 degrees. A single

piece or five pieces were used depending on whether the field was applied in parallel

or perpendicular to the average c direction respectively. The magnitude of the applied

magnetic field was chosen to be 1.45 T in order to attain the most accurate Knight shift.

4.3 Graphite Results

Figure 4.27 shows the temperature dependence of the measured Knight shift with respect

to the silver reference measured with the magnetic field parallel and perpendicular to the
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Figure 4.26: a) Fermi-Dirac distribution at low and high temperatures. The chemical
potential is fixed at 10 meV. Unlike normal metals, graphite has a rather low degeneracy
temperature of T ≈100 K. Figures b) and c) illustrate the difference between the density
of states for a non-interacting 3D electron gas and graphite.

c axis of HOPG graphite. The magnitude of the Knight shift in the sample without

correcting for bulk magnetization is defined according to the following formula:

Ks = (Bs −H)/H (4.66)

where Bs is the total magnetic field at the muon site in the sample and H is the external

applied field. Subtracting the known Knight shift of the reference (Kr) from both sides

one obtains the Knight shift in the sample in terms of the measured or known quantities:

Ks −Kr =
Bs −Br

H
(4.67)

=
fs − fr

γµH
(4.68)
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∼= fs − fr

fr

(4.69)

where fs = γµBs is the observed muon precession frequency in the sample, fr is the

muon precession frequency in the reference, Kr is the known Knight shift in the reference

(94 ppm) and where γµH has been approximated by fr. Several corrections to this

Figure 4.27: Shift in muon precession frequency in HOPG relative to Ag as a function
of temperature in an applied magnetic field of 1.45 T. K‖ and K⊥ are defined by Eq.
(4.72).

formula are needed. First, the external field at the reference and sample positions are

not identical. This shift was determined to be about 7 ppm by mounting a second piece

of silver at the sample position. Also, we are interested in the induced frequency shift

due to the hyperfine interaction with the electrons (Bhf ) whereas the total magnetic Bs

field in Eq. (4.69) has other contributing terms originated from the bulk magnetization
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of the sample [60]:

Bs = H + Bhf + Bdem + BL + Bdip (4.70)

where H is the applied magnetic field, Bdem is the demagnetization field, BL is the

Lorentz field, and Bdip is dipolar field from moments within the fictitious Lorentz sphere

surrounding the muon. Bdem and BL are the macroscopic contributions to the magnetic

field and can be evaluated as follows:

Bdem = −NM, BL =
4π

3
M, M = χH (4.71)

where N is the geometry dependent demagnetization factor, M is bulk magnetization

and χ is the total magnetic susceptibility of the sample. The dipolar field (Bdip) can be

evaluated numerically as a sum of
∑

i bi(rµ−ri) over the individual carbon atoms inside a

Lorentz sphere of a sufficiently large radius (for more details see Sections 2.3.3 and 2.3.4).

This term is opposite in sign to the sum of Bdem and BL and is quite sensitive to the

muon site. For example if one assumes that the muon adopts an interplane equilibrium

position then the overall correction is just a few ppm for K‖ and almost zero for K⊥. On

the other hand if the muon were located at a C-H bond length [86] (∼1.19 Å) from a

carbon atom there is a substantial correction for K‖ but almost none for K⊥ (see Fig.

4.28). We suspect the latter is most likely since the difference between K‖ and K⊥ has a

temperature dependence close to that of the bulk magnetic susceptibility of graphite. In

this case the Knight shift is almost isotropic and has a temperature dependence close to

that of K⊥.

A few remarks about the Knight shift data in Fig. 4.28 are in order. First, the

magnitude is anomalously large compared to normal metals considering the small Pauli

spin susceptibility in graphite 0.016×10−6 emu/g. For example in a simple metal like Ag

the ratio between the Pauli spin susceptibility and the muon Knight shift (+94 ppm) is

about 270 times smaller than what is observed in graphite. The parallel Knight shift at
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Figure 4.28: Temperature dependence of the isotropic Kiso and axial or dipolar Kdip

parts of the muon Knight shift in graphite. The filled circles and triangles represent the
corrected value of the Knight shift assuming that a muon is at the C-H bond distance
from a carbon atom. The open circles and triangles represent the corrected Knight shift
assuming that µ+ is in the interplane position.

300 K is close to that of a previous measurement on a graphite single crystal [83] if the

larger correction is made assuming a C-H bond length (about +250 ppm at RT). Second,

the Knight shift has at most a small anisotropy in contrast with the bulk magnetic

susceptibility where χ‖/χ⊥ ≈49. These observations establish that the local electronic

structure around the muon has a much different magnetic response than the conduction

electrons of graphite. In particular the local spin susceptibility at the muon is orders of

magnitude larger and far more isotropic than expected from just electrons at the Fermi

surface. Last, the frequency shift displays an unusual temperature dependence since it
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rises steadily with temperature above from about 20 K up to 500 K. Note that there is

a slight upturn in K‖ below 20 K which we attribute to the influence from the dHvA

oscillations which we discuss below.

This behaviour of the Knight shift in graphite is in a marked contrast to that seen

in conventional free electron metals where Kµ is temperature independent and propor-

tional to the Pauli spin susceptibility. On the other hand the observed increase in the

Knight shift with temperature is not predicted for a simple Kondo impurity where spin

susceptibility is temperature independent below the Kondo temperature and falls like

1/(T +TK) above TK . Thus although there is good evidence for local moment formation

the temperature dependence suggests that the behaviour is more complex than expected

from a simple Kondo impurity. In order to elucidate the origin of the unusual tempera-

ture dependence of the Knight shift we may calculate the isotropic (Kiso) and the dipolar

(Kdip) contributions as follows

Kiso =
1

3
(K‖ + 2K⊥) Kdip =

1

3
(K‖ −K⊥). (4.72)

The linear part of the isotropic Knight shift was fit to the following model [87] which is

valid for T ¿ TK and µBH ¿ kBT :

Kiso(T ) = Jo(T )
( 1

2πTK

− 0.433
T 2

T 3
K

)
, (4.73)

where Jo(T ) = β(1 + αT ) (4.74)

The fit gives a scaling parameter β =3.0860(4), α =0.0032(4) K−1 and a Kondo temper-

ature TK of 1852(40) K (see Fig.4.29). Note that in order to fit the initial rise of Kiso

with temperature the Kondo coupling constant is allowed to vary as 1 + αT . Additional

evidence for this comes from 1/T1 (see below). The Korringa-like spin relaxation rate

with the conduction electrons is also anomalous. Normally Korringa relaxation of muon

polarization is too slow to be detectable on the µSR timescale. However, if there is a
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Figure 4.29: Temperature dependence of the isotropic Kiso part of the Knight shift in
graphite. A solid line is the best fit to Eq. (4.74); the parameters extracted from the
fit are given in the main text. The limited dataset between 35 K and 485 K is used to
fit the experimental data which corresponds to applicable temperature range T¿TK for
the model.

local moment as indicated by the large Knight shift, the muon spin relaxation should

be enhanced by the indirect coupling between the muon spin and conduction electrons

through the bound electron[18]. This is confirmed by the appreciable muon spin relax-

ation rate at 896 K (see Fig. 4.30). While 1/T1 is close to the detection limit at 295 K

(see Fig 4.31) it increases steadily at higher temperatures in a non-linear fashion. Recall

for nuclei in a normal metal the magnitude of 1/T1 is predicted to rise linearly with tem-

perature (see Eq. 2.45). The observed relaxation rate in Fig. 4.30 rises faster than that

predicted from Korringa relaxation [88] (see filled circles in Fig. 4.30). This breakdown
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Figure 4.30: Temperature dependence of the longitudinal relaxation rate 1/T1 in pure
graphite measured above RT. The solid and dashed lines represent our estimates.

of the Korringa law is attributed to a number of factors, the most important of which

is the crossover from degenerate to non degenerate electron behaviour as kBT exceeds

about 100 K. In addition the fact that the Knight shift increases with temperature sug-

gests that the coupling constant Jo(T ) increases with temperature as was indicated by

the Knight shift . One can estimate 1/T1 in the first Born approximation without the

usual assumption of degenerate statistics

1/T1 = J2
o (T )

∫
g2(E)f(E, T )(1− f(E, T ))dE (4.75)

where Jo(T ) is proportional to the coupling constant between the muon and conduction

electrons, g(E) is the phenomenological density of states for graphite, and f(E, T ) is the

Fermi-Dirac distribution with a Fermi energy (chemical potential) fixed at 23 meV. The
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density of states is estimated as [89]:

g(E) = 4(0.092/γ2
o) |E − 0.5(γ2 + ∆) + constant| (4.76)

where γo, γ2 and ∆ (all in eV) are from band structure theory [90],[91] (also see Fig.

4.26c). Equation (4.75) predicts a non-linear behaviour of 1/T1 at high temperature as

observed. This can be understood as follows: Recall the linear behaviour in normal met-

als arises from the fact that only the electrons with kBT of the Fermi surface participate

in the scattering due to Pauli blocking. However at high temperatures in graphite there

are two new effects. First, a large fraction of the electrons are already involved in the scat-

tering due to the crossover into non degenerate statistics. This weakens the temperature

dependence. On the other hand the density of states is strongly energy dependent near

the Fermi energy as can be seen from Eq. (4.76). This causes an increase in the overall

number of free carriers available for scattering and a stronger than linear behaviour in

T . In graphite these two opposing effects compete. The fit to equation (4.75) to a single

temperature independent parameter Jo =0.1080(6) is shown as a dashed line in Fig. 4.30.

The same model with a temperature dependent coupling constant Jo(T ) = Jo(1 + αT )

(Jo =1.4125(4) and α =0.0032(4) K−1, where α is the same constant used to fit Kiso)

reproduces the experimental data rather well (see a solid line in Fig. 4.30).

4.4 Discussion on The Graphite Results

The results in Fig. 4.28 show that the isotropic part of the Knight shift dominates and

grows with temperature whereas the dipolar part is much smaller and almost temper-

ature independent. Given the evidence for a local moment we adopt a local picture of

the center similar to what is used to describe muonium in semiconductors. Then the

isotropic part of the Knight shift arises from a contact interaction with a 1s hydrogen-

like orbital centered on the muon whereas the dipolar part is attributed to spin density
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localized on the nearest neighbor carbon(s). The small hyperfine anisotropy required to

explain the observed Knight shift anisotropy is similar to what is observed for a muonium

substituted free radical or bond centered muonium in covalent semiconductors (such as

GaAs [92]). In these cases the vast majority of the spin density rests on the neighboring

atoms. Thus while the dipolar part of the Knight shift in graphite is much less than

the isotropic part it is possible that most of the magnetic moment is not on the muon

but rests on the neighboring carbon atoms. For example recent theoretical calculations

for muonium interacting with a single graphene plane (see Fig. 4.31) predict that the

hydrogen/muonium atom bonds to one carbon with the majority of the spin density on

the six neighboring carbons. Of course this is a crude approximation to graphite since the

muonium would be sandwiched between two graphene layers. Nevertheless, it is likely

that a similar structure exists in graphite.

HGraphene Plane
o

Figure 4.31: Molecular orbital simulation [93] on a single sheet of graphite reveals the
existence of a loosely bound radical for a hydrogen atom. Note that the spin density is
not on a single carbon but rather distributed among nearby carbon atoms.

Consider the temperature dependence of Kiso which increases with temperature (see
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Fig. 4.29). This is difficult to understand given the magnetic susceptibility of any local

moment should decrease with temperature. We suggest that the increase in Kiso and

1/T1 (see Fig. 4.30) is due to a small temperature induced change in the electronic

structure. For example the contact interaction may increase with temperature as the

C-Mu bond length increases. This can be understood since in the limit where the C-Mu

bond is broken the contact interaction on the muon can increase to that of free muonium.

Around 500 K the predicted 1/(T + TK) decrease for a Kondo impurity behaviour takes

over and Kiso gradually decreases.

As mentioned previously K‖ displays a slight upturn at low temperatures below 20

K (see Fig. 4.27). In order to determine the origin of this we measured the bulk mag-

netic susceptibility in a SQUID magnetometer on the same sample of HOPG graphite.

The magnetic field scan data taken at 3 K (see Fig. 4.32) show very pronounced dHvA

oscillations caused by the periodic change in the density of states at the Fermi energy

brought about by the changing energy spacing between Landau levels. To understand the

possible influence of this on the temperature dependence of the Knight shift we measured

the bulk susceptibility as a function of temperature for several applied fields shown as an

inset of Fig. 4.32. As we expected the low temperature behaviour of the bulk suscepti-

bility depends strongly on the magnetic field. At 1.45 T where our µSR measurements

are performed the susceptibility shows an upturn at low temperatures whereas at 2.6 T

it turns down. This is most likely the explanation for the low temperature feature seen

in K‖ (see Fig. 4.27). Note that the effect is less noticeable for K⊥. This confirms our

hypothesis that the observed frequency shift for a field parallel to the c-axis is strongly

influenced by the bulk magnetic susceptibility.
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Figure 4.32: Oscillations of the magnetic susceptibility in pyrolytic graphite for H‖c and
T=2.4 K. A magnitude of the applied magnetic field used for the muon Knight shift
measurements is indicated by an arrow. The inset shows the low temperature part of the
magnetic susceptibility in single-crystal graphite with H‖c taken in a magnetic field of
1.45 T and 2.6 T. The apparent change in the shape of the curves follows the de Haas-van
Alphen oscillations.

4.5 µSR in Lithium Intercalated Graphite (LiC6)

For comparison, additional µSR measurements were also taken on lithium intercalated

compound LiC6 which, unlike graphite, is a good metal. LiC6 belongs to a class of

materials in which Li ions form an ordered lattice in between the graphite sheets. Figures

4.33 and 4.34 illustrate the LiC6 crystal structure in hard sphere approximation.

Angle-resolved photoemission results [94] show that the Li intercalant is fully ionized

with one electron per Li atom transferred to the graphite layers which leads to the highly
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Figure 4.33: The x− y cross-section of metallic Li and carbon C balls.

increased metallicity. Lithium intercalated compounds are extremely unstable in air and

require special handling. In our case, the sample of LiC6 was sealed in a small Al vessel

equipped with a thin (50 µm) Kapton window to allow muons to enter the sample.

The muon Knight shift was measured in an external magnetic field of 1.45 T applied

along the c axis (see Fig. 4.35). Note that the magnitude of the Knight shift is about -100

ppm and temperature independent. This is typical for simple metals where the Knight

shift tracks the Pauli spin susceptibility[95]. As one might expect the increased carrier

concentration from Li appears to destroy (or screen out) the local moment seen in pure
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Figure 4.34: LiC6: The close-packed arrangement in the x− z plane.

Figure 4.35: Temperature dependence of the muon Knight shift in LiC6. For comparison,
the same quantity measured in HOPG is represented by the open triangles.
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graphite. The unusual feature in LiC6 is the sign of Knight shift (negative) which implies

that the spin density at the muon site is polarized opposite to the conduction electrons.

This suggests that the muon is not in direct contact with the conduction electrons. One

possibility is that the increased Fermi level favors the formation of a Mu− ion which

should bond to the Li+. We know that the electronic band created by Li+ [96] lies

above the Fermi level throughout the whole Brillouin zone and is therefore unoccupied.

However a local level created by a MuLi+ may be below the Fermi surface and lead to a

neutral Mu−Li+ complex. A similar mechanism has been proposed to explain a hydrogen

complex formation in MC8 (M=K, Rb and Sc) alkali-metal intercalation compounds [97].

This could explain the negative Knight shift. Thus, the external field likely polarizes the

conduction electrons which are located primarily in the carbon plane. If there is little

direct spin density on MuLi compound, then core polarization of the molecular orbitals for

Mu−Li+ could lead to a net negative frequency shift. Note that similar core polarization

effects lead to a negative contact interaction for bond centered muonium in silicon [98].

Finally, we note that as we expected the increased carrier concentration in LiC6

dramatically influences the Knight shift compared to that of graphite. The high density

of electrons leads to the substantially reduced frequency shift making it comparable to

that of simple metals. The Knight shift relative to the χLi
s (i.e. KLiC6

µ /χLi
s ≈ 48 compared

to KHOPG
µ /χHOPG

s ≈ 270) is much reduced implying that the local moment is destroyed.
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CPC Results and Discussion

5.1 Unperturbed CPC Chain

In this chapter we present results of an experiment designed to test the predicted magnetic

properties of perturbed one dimensional (1D) antiferromagnetic (AFM) S=1/2 chains

characterized by a gapless spectrum of magnetic excitations. An ideal experimental

system is one where the interaction between impurities can be neglected. The muon and

the technique of muon spin rotation are naturally suited to this problem since there is

typically only one muon (i.e. impurity) in a sample at any given time. Furthermore,

the muon acts as both the impurity and a local probe of the magnetic susceptibility.

We anticipate that the positively charged muon distorts the crystal lattice and thereby

alters the Heisenberg exchange coupling between the magnetic ions in the vicinity of

the muon. The resulting modification of the local susceptibility is detected in the muon

frequency shift. It is worth noting that although the muon possesses a magnetic dipole

moment, which couples to the magnetic moments on the spin chain, this direct magnetic

interaction is negligible compared to the indirect effect of the Coulomb interaction.

Dichlorobis (pyridine) copper II (CuCl2·2NC5H5) or CPC is a linear S=1/2 antifer-

romagnetic chain. CPC has a monoclinic crystal structure and consists of coplanar units

assembled into polymeric chains in which each Cu2+ ion is surrounded by four chlorine

anions and two nitrogen atoms (see Fig. 5.36). Each Cu2+ ion has two closer Cl−(1) ions

(2.28 Å) located in the a − b plane and two more distant Cl−(2) ions (3.05 Å) located on

75
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adjacent planes in the chain. The angle between the copper–chlorine and the copper–

nitrogen bonds is close to 90o. The in-chain copper ions are separated by a distance

of 3.57 Å, compared to the interchain nearest-neighbor separation of b = 8.59 Å[99].

This large interchain separation assures a high degree of one-dimensionality. In order

to verify the effect of the µ+ perturbation and to test the theory we first measured the

bulk susceptibility without the perturbing influence of the muon. A precise value of

J was extracted by performing d.c. susceptibility measurements in fields of 0.9 T and

1.45 T. The data were fit to the theory of Eggert and Affleck [52] and a value for the

interchain coupling J was obtained. Although the theoretical procedure was developed

to deal with the impurity problem, the unperturbed case is also an important test of

the theory. Within experimental limits the measured susceptibility χ(T ) is close to that

reported earlier [100],[101] but more accurate. Note that all previously reported results

were analyzed on a finite size chain using numerical methods within the conventional

Bonner-Fisher (B-F) model based on the following Hamiltonian [102]

HB−F =
∑

i

(−2JSi · Si+1 + gµBHSz
i ) (5.77)

where J is the nearest neighbor exchange coupling constant, Si is the spin on the ith site, g

is the isotropic g−factor, µB is the Bohr magneton and H is the applied magnetic field. In

the past, the Bonner-Fisher model has proven to be adequate in analyzing experimental

data at high temperature and in the vicinity of a characteristic peak observed in the

chain susceptibility. However, the B-F model is known to fail in the low T limit. This

breakdown was first observed in d.c. susceptibility measurements in the early 1970’s [101].

The procedure developed recently by Eggert, Affleck and Takahashi correctly describes

the experimental data in a wide range of temperatures including the low temperature

region where the theory predicts a divergent slope of χ(T ) as T → 0 and an inflection

point at T ∼ 0.087J [103],[104]. Figure 5.37 illustrates the d.c. susceptibility of CPC
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Figure 5.36: CPC crystal structure. a) The chain of Cu2+ ions. b) The CPC unit cell as
viewed down along the c axis (a = 17 Å , b = 8.59 Å and β = 91o.52′). Dashed lines
indicate the superexchange paths. From ref. [100].

along with the best fit curve according to the Eggert–Affleck calculation. The measured

bulk susceptibility follows a Curie law at high temperatures, goes through a maximum
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Figure 5.37: Theoretical QMC fit to the SQUID CPC data: The data were taken in an
applied magnetic field of 1.45 T. The fit is provided courtesy of S. Eggert.

around T=17.8 K and then the slope starts increasing again. As seen in Fig. 5.37, the

theoretical fit to the experimental data is excellent over the entire temperature range

with deviations of less than 1%. The best fit yields a value of the intrachain coupling

J of 13.7(1) K and a g−factor of 2.06(1). The estimate of J is about 2% larger than

previously reported. This extremely good fit constitutes strong evidence for the validity

of the Eggert–Affleck procedure.

5.2 µSR in CPC – Effect of Perturbation

Frequency shift measurements on a powdered sample of CPC have been performed on

the M20 beamline at TRIUMF by utilizing the same Knight shift apparatus described



Chapter 5. CPC Results and Discussion 79

in Section. 3.1. The magnitude of the applied magnetic field |H| = 0.4 T was chosen to

provide a good balance between the muon frequency shift and the amplitude of the µSR
signal. To determine the number of signals (n) and their approximate frequency values,

Fast Fourier transforms of the time spectra have been performed. Then the data have

been fitted in the time domain to a TF relaxation function with a Gaussian envelope

Gxx(t):

Ni(t) = N o
i {exp(−t/τµ)[1 +

n∑

j=1

A
o(j)
i G(j)

xx (t) cos(ω(j)
µ t + φ

(j)
i )] + Bi}. (5.78)

First we will describe the low temperature region because it is only at the low tem-

peratures that the impurity effects become important. As seen in Figs. 5.38 and 5.39,

the spin precession signal and the Fast Fourier Transform (FFT) of the precession signal

revealed a significant difference in muon behavior between low and high temperature

regions. At temperatures above 100 K one observes a narrow single frequency line. As

the temperature decreases, the line becomes noticeably broadened and eventually splits

into several frequency lines as the temperature drops below 25 K (see Fig 5.39). The best

least-square fits show that there are two fast relaxing signals (labeled as FR1 and FR2)

with small asymmetries AFR1
µ = 6% and AFR2

µ = 3% and one slow relaxing signal (SR)

with a large asymmetry ASR
µ = 15%. The temperature dependence of the relaxation rates

of the FR1, FR2 and SR signals is shown in Fig. 5.40. It is clear that muons occupy

more than one interstitial site. Above 30 K the line merges due to the decreasing local

spin susceptibility.



Chapter 5. CPC Results and Discussion 80

Figure 5.38: The CPC signal measured at the temperatures of 7.53 K, 17.5 K and 200

K. The complex asymmetry time spectrum is displayed in the Rotating Reference Frame

(RRF=53 MHz).



Chapter 5. CPC Results and Discussion 81

Figure 5.39: The evolution of the FFT transforms with temperature.
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Figure 5.40: Relaxation rates as a function of temperature in CPC.

Figures 5.41, 5.42 and 5.43 show the temperature dependence of the measured fre-

quency shifts of the fast relaxing signals and the slow relaxing signal observed at low

temperatures. A few important observations are in order. First, since the experiment

was performed on a powdered CPC sample, the dipolar interaction contributes only to

the linewidth and thus the frequency shift should depend only on the contact interac-

tion (see Eq. (1.23)). The contact hyperfine interaction in CPC is attributed to either,

direct overlap of the wave function tails of the magnetic electrons with the µ+, or to the

super–transferred hyperfine field arising from covalency effects. Considering the localized

nature of the Cu2+ d-orbital, the latter effect is more likely. The implanted muon can
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Figure 5.41: Temperature dependence of the frequency shifts in CPC measured in an
applied magnetic field of 0.4 T. An inset shows the low temperature part of the frequency
shift of the slow relaxing (SR) signal.

be viewed as competing for bonding to the Cl− ions, which leads to some degree of spin

density transfer onto the µ+. This perturbation may not necessarily be exactly at the

link–symmetric location, but should still significantly affect the exchange path between

two of the copper ions. In CPC one can identify at least three inequivalent sites where

the muon may localize. Two of them can be associated with a muon interacting with

two chlorine ions (i.e. Cl−–µ+–Cl−). Note that a similar complex has been identified in

a variety of ionic solids containing fluorine [50]. The two fast relaxing signals (FR1 and

FR2) can be attributed to these two sites where muons locked between two chloride ions.

The temperature dependence of the Knight shift of the FR1 and FR2 signals suggests
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Figure 5.42: Temperature dependence of the frequency shift of FR1 µSR signals in
CPC.

that the muon perturbation at these lattice sites is strong. In contrast, the frequency

shift of the SR signal practically follows the bulk magnetic susceptibility and displays a

minimum around 14 K in the vicinity of a characteristic peak seen in the d.c. suscep-

tibility (see inset in Fig. 5.41). This indicates that the SR signal is attributed to the

muons whose influence on the chain is weak. Considering the large interchain distance

in CPC (8.59 Å), one can speculate that it is likely that the SR signal is associated with

the muons thermalized in the space between chains, far from the super-exchange path.

Second, there is qualitative agreement with the E-A theory in that the muon charge

significantly disturbs the coupling between Cu2+ ions. This is clear from the fact that the

temperature dependence of the muon frequency shift of the FR1 and FR2 µSR signals
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Figure 5.43: The low temperature part of the frequency shift of the FR2 µSR signal in
CPC.

is substantially different from that of the unperturbed CPC susceptibility. Also, the

characteristic maximum (at about 18 K) seen in the unperturbed d.c. susceptibility is

completely ‘washed out’, which is clear evidence for a strong perturbation. Among the

unexpected features is the small dip around 100 K (see Fig. 5.41). One of the possible

explanations is a muon transition into the sites discussed above.

Finally we note that, although the precise location(s) of the muon and the result-

ing symmetry of the chain distortion are still unknown, we have definitely observed a

dramatic impurity effect. In particular, the local spin susceptibility around the muon in

CPC deviates significantly from the bulk magnetic susceptibility at least for two of the

muon sites, as predicted by the Affleck–Eggert theory.



Chapter 6

Summary

6.1 Graphite and LiC6

In conclusion, we have studied the local electronic structure for muons implanted in

HOPG graphite by means of the muon Knight shift measurements from 3 K to 900 K. The

measured Knight shift in graphite is unusually large and temperature dependent which

indicates the formation of a local moment. This is in contrast to normal metals where the

Knight shifts are small and scale with the Pauli susceptibility. The isotropic part of the

Knight shift is much larger than the dipolar part and rises with temperature. We have

interpreted these results in terms of a local model where the spin density is predominantly

on the neighboring carbons, which is similar to what is observed in some semiconductors

(e.g. GaAs). This is also consistent with recent molecular orbital calculation for hydrogen

on a single graphite sheet. The increase in the isotropic part of the Knight shift, which

measures the contact interaction, indicates that the local electronic structure changes

with temperature. At very low temperatures the observed upturn in K‖ is attributed to

the the bulk susceptibility, which is influenced by the De Haas–van Alphen effect at low

T .

In addition, the measured muon spin relaxation rate 1/T1 is unusually large and devi-

ates from the Korringa relation for metals. This is attributed in part to a strong energy

dependence in the density of states coupled with a small Fermi energy. A phenomenologi-

cal model based on the specific graphite density of states and the temperature dependent

86
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coupling constant J(T ) describes the 1/T1 data rather well. The large extracted value

of the Kondo temperature , TK=1852(40) K, is consistent with the strong-coupling limit

picture. It is also worth noting that the conventional Kondo problem has only been ex-

tensively studied for normal metals where kBT is much less than EF , i.e. the degenerate

electron gas. The situation in graphite is quite different: there, EF is comparable to

kBT .

Similar muon precession measurements on LiC6 which is more metallic, produced a

small, negative and temperature independent Knight shift. The reduced value of the

Knight shift is expected because of the increased carrier concentration in LiC6 that ap-

pears to screen out the local moment at a much higher temperature than in pure graphite.

The observed negative frequency shift is unusual for normal metals and is possibly at-

tributable to core polarization of a Li+Mu− complex. A similar mechanism has been

proposed to explain a hydrogen complex formation in related intercalated compounds

KC8 and RbC8.

6.2 CPC

The local magnetic susceptibility around the muon in quasi the one dimensional spin

1/2 antiferromagnetic chain compound CPC has been investigated using muon spin ro-

tation/relaxation. A recent theory by Eggert and Affleck (EA) predicts that the local

magnetic susceptibility near an impurity in a spin 1/2 chain is dramatically different

compared to the bulk magnetic susceptibility. This behaviour is attributed to the gap-

less spectrum of magnetic excitations and may be considered the magnetic equivalent of

the Kondo effect in normal metals. There is considerable experimental evidence that in

most two and three dimensional magnetic compounds the muon impurity has a negligi-

ble effect i.e. the local magnetic susceptibility tracks the bulk susceptibility. To verify
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the EA theory, we compared the local spin susceptibility as measured by the muon spin

precession frequency with the bulk magnetic susceptibility measured in a SQUID mag-

netometer. The theoretical fit to the experimental unperturbed susceptibility data is

excellent over the entire temperature range. The best fit yields a value of the intrachain

coupling constant of J = 13.7(1) K and a g-factor of 2.06(1). This estimate of J is about

2% larger than previously reported.

In CPC the measured muon frequency shift shows a dramatic difference between the

local and bulk magnetic response. The Fast Fourier transforms display complex multi-

ple frequency spectra present at low temperatures below 30 K. This probably represents

localization of the muon at magnetically inequivalent sites. The characteristic maxi-

mum around 18 K seen in the unperturbed d.c. susceptibility is completely washed out

in the frequency shift of the fast relaxing signals, which is clear evidence for a strong

perturbation and thus supports the validity of the Eggert–Affleck theory.



Bibliography

[1] P. Debye and E. Hückel, Z. Phys. 24, 185 and 305 (1923).

[2] J. P. van Dyke et al., Nucl. Mater. 67-70, 533 (1978).

[3] N. F. Lane and R. C. Cloney, Nucl. Mater. 69-70, 582 (1978).

[4] Z. P. Popovic and M. J. Scott, Phys. Rev. B5, 2109 (1972).

[5] E. Zaremba, L. M. Sander, H. B. Shore and J. H. Rose, J. Physics F7, 1763 (1977).

[6] P. Jena and K. S. Singwi, Phys. Rev. B17, 3518 (1978).

[7] F. Guinea and F. Flores, J. Phys. C13, 4137 (1980).

[8] J.K. Norskov, Phys. Rev. B20, 446 (1979).

[9] M. Manninen et al., Solid State Comm. 23, 795 (1977).

[10] K. H. Chow, B. Hitti and R. F. Kiefl, in Identification of Defects in Semiconductors,
edited by M. Stavola (Academic Press, New York, 1998).

[11] B. Bech Nelsen, K. Bonde Nelsen and J. R. Byberg, Materials Science Forum 143-
147, 909 (1994).

[12] Yu. V. Gorelkinskii and N.N. Nevinnyi, Physica B, 155 (1991).

[13] K. H. Chow, R. F. Kiefl, B. Hitti, T. L. Estle and R. L. Lichti, Phys. Rev. Lett. 84,
2251 (2000).

[14] C. Rizzuto, Rep. Prog. Phys. 37, 147 (1974).

[15] G. Gruner, Adv. Phys. 23, 941 (1974).

[16] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press,
Cambridge, 1993).

[17] P. Nozieres, J. Low Temp. Phys. 17, 31 (1974).

[18] W. A. MacFarlane et al, Phys. Rev. B 58, 1004 (1998).

[19] W. A. MacFarlane, R. F. Kiefl et al., Hyp. Int. 105, 77 (1997).

89



Bibliography 90

[20] R.F. Kiefl and T.L. Estle, in Hydrogen in Semiconductors 547 , Ed. by J. Pancove
and N.M. Johnson (Academic Press, New York, 1990).

[21] O. Hartman, Hyp. Int. 4, 828 (1978).

[22] T.M.S. Johnston et al., Hyp. Int. 106, 71 (1997).

[23] N. W. Ashcroft and N. D. Mermin, Solid State Physics (1976) pp. 340-345 (Harcourt
Brace College Publishers).

[24] J. Lindhard, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd., 28 (1954).

[25] J. Freidel, Phil. Mag 43, 153 (1952).

[26] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[27] C.O. Almbladh, U. von Barth, Z.D. Popovic and M.L. Stott, Phys. Rev. B14, 2250
(1976).

[28] P. W. Andreson, Phys. Rev.124, 41 (1961).

[29] J. Kondo, Prog. Theor. Phys.28, 846 (1962).

[30] J. Kondo, in Kinzoku Densi Ron (in Japanese), Shokabo, Tokyo, (1983).

[31] L. G. Wieglson, Rev. Mod. Phys. 47 773; Nobel Symposia 24, 68 (Academic Press
New-York, 1974)
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