BELIEVE   ME   NOT!    - -     A   SKEPTICs   GUIDE  

next up previous
Next: Polarization Up: Waves Previous: The Wave Equation

Wavy Strings

 

  
Figure: A small segment of a taut string.
\begin{figure}
\begin{center}\mbox{
\epsfig{file=PS/string-seg.eps,height=2.0in} %
}\end{center}\end{figure}

One system that exhibits wave motion is the taut string. Picture a string with a uniform mass per unit length  $\mu$  under tension  F. Ignoring any effects of gravity, the undisturbed string will of course follow a straight line which we label the x axis. There are actually two ways we can ``perturb'' the quiescent string: with a ``longitudinal'' compression/stretch displacement (basically a sound wave in the string) or with a ``transverse'' displacement in a direction perpendicular to the x axis, which we will label the y direction.

The sketch in Fig. 14.2 shows a small string segment of length  $d\ell$  and mass   $dm = \mu \, d\ell$  which makes an average angle  $\theta$  with respect to the x axis. The angle actually changes from   $\theta - d\theta/2$ at the left end of the segment to   $\theta + d\theta/2$ at the right end. For small displacements   $\theta \ll 1$  [the large $\theta$ shown in the sketch is just for visual clarity] and we can use the SMALL-ANGLE APPROXIMATIONS

\begin{displaymath}dx = d\ell \, \cos \theta \approx d\ell \end{displaymath}


\begin{displaymath}dy = d\ell \, \sin \theta \approx \theta \, d\ell \end{displaymath}


 \begin{displaymath}{dy \over dx} = \tan \theta \approx \theta
\end{displaymath} (14.11)

Furthermore, for small $\theta$ the net force

 \begin{displaymath}dF = 2F \, \sin (d\theta/2) \approx 2F \, (d\theta/2) = F \, d\theta
\end{displaymath} (14.12)

acting on the string segment is essentially in the y direction, so we can use Newton's SECOND LAW on the segment at a fixed x location on the string:

\begin{displaymath}dF \approx dm \, a_y = \ddot{y} \, dm \qquad \mbox{\rm or}
\end{displaymath}


\begin{displaymath}F \, d\theta \approx \ddot{y} \, \mu \, d\ell \qquad \mbox{\rm or}
\end{displaymath}

 

 \begin{displaymath}\left(\partial^2 y \over \partial t^2\right)_x \; \approx \;  . . . 
 . . . pprox \;
{F \over \mu} \, \left( d \theta \over dx \right) .
\end{displaymath} (14.13)

Referring now back to Eq. (11) we can use   $\theta \approx dy/dx$  to set

 \begin{displaymath}\left( d\theta \over dx \right) \; \approx \;
\left( \partial^2 y \over dx^2 \right)_t
\end{displaymath} (14.14)

-- i.e. the curvature of the string at time t. Plugging Eq. (14) back into Eq. (13) gives

 \begin{displaymath}\left(\partial^2 y \over \partial t^2\right)_x \; - \;
{F \o . . . 
 . . .  \, \left( \partial^2 y \over dx^2 \right)_t
\; \approx \; 0
\end{displaymath} (14.15)

which is the WAVE EQUATION with

 \begin{displaymath}{1 \over c^2} \; = \; {\mu \over F}
\quad \mbox{\rm or} \quad
c \; = \; \sqrt{F \over \mu} .
\end{displaymath} (14.16)

We may therefore jump right to the conclusion that waves will propagate down a taut string at this velocity.



 
next up previous
Next: Polarization Up: Waves Previous: The Wave Equation
Jess H. Brewer
1998-11-06